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UAVs have the potential for autonomous airborne remote sensing applications that re-
quire rapid response to natural hazards (e.g.. volcano eruptions, earthquakes). As these
applications require very accurate positioning, such as airborne Synthetic Aperture Radar,
tightly coupled Global Positioning System (GPS) Precise Point Positioning (PPP) Inertial
Navigation Systems (INS) are an attractive method to perform real-time aircraft posi-
tioning. In particular, PPP can achieve a level of positioning accuracy that is similar to
Real-Time Kinematic (RTK) GPS, without the need of a relatively close GPS reference
station. However, the PPP method is known to converge to accurate positioning more
slowly when compared to RTK, a drawback of PPP that is amplified whenever the receiver
platform is faced with GPS challenged environments, such as poor satellite visibility and
frequent phase breaks. Unfortunately, these challenging conditions occur more often when
the platform being positioned is an aircraft that experiences abrupt changes in attitude.
In this paper we present the use of a simulation environment to characterize the position
estimation performance sensitivity of PPP/INS through a Monte Carlo analysis that is
considered under various conditions, such as: the intensity of multipath errors, the num-
ber of phase breaks that occur in a flight, satellite geometry, atmospheric conditions, noise
characteristics and grade of the inertial sensor, and accuracy of GPS orbit products.

Nomenclature

x = State Vector
ψ = Attitude (radians)
v = Velocity (meters/second)
r = Position (meters)
R = Geometric Range (meters)
C = Coordinate Transformation Matrix
ρ = Pseudorange (meters)
φ = Carrier-Phase (meters)
c = Speed of light (meters/second)
δθ = Delta Angle (radians)
δv = Delta Velocity (meters/second)
el = User to Satellite Elevation Angle (radians)
F = System Matrix
Φ = State Transition Matrix
τ = Time Step (second)
φ = Roll (radians)
θ = Pitch (radians)
ψ = Yaw (radians)
ωe = Earth Rotation Rate (radians/second)
Lat = Latitude (radians)
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Lon = Longitude (radians)
H = Height (meters)

I. Introduction

The Precise Point Positioning (PPP) approach uses dual-frequency undifferenced GPS observables in con-
junction with precise orbit and clock bias products and measurement models to achieve decimeter to

centimeter level positioning with a single receiver.1 Real-time PPP is enabled by orbit and clock products
being broadcast to end user. These global correctors have been integrated into the L-band by commercial
entities,2 can be obtained over the internet or through an Iridium modem link from NASA’s Global Dif-
ferential GPS System,3 and have recently been made freely available on the internet by the International
GNSS Service.4 The similar level of accuracy of real-time PPP compared to traditional Differential GPS
(DGPS) (i.e. Real Time Kinematic) without the need for a nearby static GPS reference station, is particu-
larly attractive for airborne scientific instrument platforms that require this level of accuracy, global coverage
and rapid response capability. For instance, real-time PPP is used for NASA’s airborne Synthetic Aperture
Radar (SAR) platforms that are used for repeat pass interferometry in response to natural hazzards such as
volcano eruptions, tsunamis, and large earthquakes.5

The benefits of coupling GPS with Inertial Navigation Systems (INS) have long been well understood,6

and recent studies have investigated and demonstrated combined PPP/INS architectures for kinematic ap-
plications on ground vehicles,7,8,9,10 and airborne platforms.10 In these previous works, both loosely-coupled
and tightly-coupled architectures have been investigated, and when provided clear open sky-access and on
vehicles with docile dynamics, both approaches have shown to exhibit similar estimation performance,9.10

However, when confronted with challenging GPS environments, such as poor visibility (e.g. urban canyon),
frequent phase breaks, and high-multipath, tightly-coupled formulations inherently have the advantage,9.10

Rapidly deployable Unmanned Aerial Vehicle (UAV) platforms are attractive for many applications that
require precise positioning, and the flexibility for deployment anywhere on the Earth, but often suffer from
aforementioned environmental conditions that are unfavorable for achieving optimal PPP performance. In
particular, UAVs typically have fast dynamics (i.e. roll angles approaching 45◦ are not uncommon), which
induces poor satellite geometry, increases the likelihood of phase breaks, and lends itself to the need of
tightly-coupled PPP/INS for precise kinematic positioning of a UAVs. In this paper, we characterize the
expected performance of PPP/INS when faced with several conditions that are well known to be challenging
for PPP, and we also assess the impact of various grade inertial sensors.

The rest of this paper is organized as follows, Section II. details the PPP/INS formulation used and Section
III. describes the simulation environment used for this study as well as the design of the Monte Carlo study.
Section IV. summarizes the results and Section V. offers the conclusions of this work and discusses future
plans for implementation and experimental evaluation in NASA JPL’s GIPSY-OASIS software,11.12

II. Algorithm Formulation

This section gives a brief overview of the formulations used in this paper. First an overview of the PPP
observation model. Then the mechanization of the Inertial Measurement Unit (IMU) data in the inertial
frame is covered. Finally, the Extended Kalman Filter used to combine the GPS and IMU data is discussed.

A. PPP Observation Model

The PPP approach utilizes dual-frequency undifferenced GPS observables. Because undifferenced data is
being used, methods for mitigating GPS error sources (e.g., ionospheric delay, tropospheric delay, and receiver
clock delay), which are canceled through data differing with traditional Differential GPS (DGPS), must be
incorporated in the measurement models.

To mitigate the ionospheric delay, the dispersive nature of the ionosphere is leveraged, and a linear
combination of the GPS L1 and L2 frequencies (1575.42 MHz and 1227.60 MHz, respectively) is formed
to produce ionospheric-free (IF) pseudorange and carrier phase measurements.13 The IF combination for
psuedorange and carrier-phase can be seen in Eq. 1 and Eq. 2, respectively.
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ρjIF = ρjL1

[
f21

f21 − f22

]
− ρjL2

[
f21

f21 − f22

]
= 2.546ρjL1 − 1.546ρjL2 (1)

φjIF = φjL1

[
f21

f21 − f22

]
− φjL2

[
f21

f21 − f22

]
= 2.546φjL1 − 1.546φjL2 (2)

In Eq. 1 and Eq. 2 the f1 and f2 are the L1 and L2 frequencies, ρL1 and ρL2 are the pseudorange
measurements on the L1 and L2 frequencies, φL1 and φL2 are the carrier-phase measurements on the L1

and L2 frequencies. The superscript j in Eq. 1 and Eq. 2 is used to designate the measurement between
the platform and satellite j.

Using the IF combination, the pseudorange and carrier-phase measurements are modeled as shown in
Eq. 3 and Eq. 4, respectively: where δtu is the receiver’s clock bias, Tz is the tropospheric delay in
the zenith direction, m(elj) is a user to satellite elevation angle dependent mapping function, λIF is the
wavelength corresponding to the IF combination, and NIF is phase ambiguity. The geometric range between
the platform and the satellite is denoted as Rj , and given as Rj =

√
(xj − xu)2 + (yj − yu)2 + (zj − zu)2,

where the subscript u represents the platforms position, and the superscript j represents the satellite, both
in the same cartesian reference frame.

ρjIF = Rj + cδtu + Tzm(el.j) + εjρ (3)

φjIF = Rj + cδtu + Tzm(elj) + λIFN
j
IF + εjφ (4)

In Eqs. 3 and 4 the remaining unmodelled error sources are indicated with ε. In addition, the tropospheric
delay Tz in Eqs. 3 and 4 is composed of both a wet and dry components. In practice, the dry delay makes
up the majority of the total zenith path tropospheric delay (i.e. ≈ 2.5 meters) and can be well modeled. The
wet delay is on the order to 10% the dry delay and is typically estimated. Within this study, the Hoppfield
model14 is used to model the dry component of the troposphere and an estimated parameters is used to
compensate for the residual error of the dry delay model and wet delay. The mapping function used for this
study was selected from Misra and Enge13 and is given in Eq. 5.

m(elj) =
1.001√

0.002001 + sin(elj)2
(5)

In general, it should be noted that PPP observational models for moving platforms typically include
corrections for relativistic effects (i.e. from the GPS broadcast correction), receiver and satellite antenna
phase center variation, and carrier-phase wind-up, however, these effects were neglected within this simulation
study.

B. Inertial Navigation System Mechanization

Sometimes the terms are used interchangeably, in this paper, an IMU is used to denote a set of of three
orthogonal accelerometers and three orthogonal gyroscopes and INS is the processing of IMU data on a
navigation computer. The mechanization of INS can be broken up into four steps: attitude update, specific
force transformation, velocity update, and position update. The specific details of the mechanization selected
for this study are described next.

1. Attitude Update

To perform the attitude update, a third order Runge-Kutta method for quaternion integration, provided by
Jekeli,15 is used in order to limit the algorithmic integration errors to the fourth order. The quaternion is
updated using Eq. 6: where I is a 4x4 identity matrix, β is a matrix composed of the delta angles measured
with the gyroscopes and can be seen in Eq. 7, the subscript t signifies the discrete samples (e.g. t − 2 is
using data from two time steps previous) .

q̂t = [I +
1

12
(B̂t + 4B̂t−1 + B̂t−2) +

1

12
(I +

1

4
β̂t)β̂t−1β̂t−2 +

1

12
β̂t(β̂t−1 −

1

2
β̂t−2)]q̂t−2 (6)
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In Eq. 7 n takes an integer value of 1, 2, or 3.

β̂t+1−n =

 0 (3(δθ1)t+1−n−(δθ1)t−n) (3(δθ2)t+1−n−(δθ2)t−n) (3(δθ3)t+1−n−(δθ3)t−n)

(−3(δθ1)t+1−n+(δθ1)t−n) 0 (3(δθ3)t+1−n−(δθ3)t−n) (−3(δθ2)t+1−n+(δθ2)t−n)

(−3(δθ2)t+1−n+(δθ2)t−n) (−3(δθ3)t+1−n+(δθ3)t−n) 0 (3(δθ1)t+1−n−(δθ1)t−n)

(−3(δθ3)t+1−n+(δθ3)t−n) (3(δθ2)t+1−n−(δθ2)t−n) (−3(δθ1)t+1−n+(δθ1)t−n) 0

 (7)

The platform’s body to inertial direction cosine matrix (DCM) is related to the updated quaternion of the

form q̂t = [a, b, c, d]
T

using Eq. 8.

Cib =

a2 + b2 − c2 − d2 2(bc+ ad) 2(bd− ac)
2(bc− ad) 2 − b2 + c2 − d2 2(cd+ ab)

2(bd+ ac) 2(cd− ab) a2 − b2 − c2 + d2

 (8)

2. Specific Force Transformation

After the attitude has been updated, the next step in the INS mechanization is the transformation of the
accelerometer measured specific force, or equivalently, incremental changes to the body-axis velocity ∆vb into
the inertial frame. This must be done because the accelerometers measures specific force along the body-axis;
however, for the velocity update step the specific force must be in the inertial frame. The transformed ∆vb
can be found using Eq. 9 where Cib is the body to inertial DCM of the INS updated quaternion from Eq. 8.

∆vi = Cib∆v
b (9)

3. Velocity Update

With the transformed specific force, the updated velocity is calculated using Eq. 10. Where the updated
velocity is the summation of the previous velocity value (k− 1|k− 1), the IMU measured change in velocity,
∆vi, and the acceleration due to gravity in the inertial frame, γi, integrated over the sampling interval τ .

vik|k−1 = vik−1|k−1 + ∆vi + γiτ (10)

4. Position Update

The final step in the INS mechanization is to calculate the updated position. The updated position estimate
is a function of the previous position estimate and the average of the previous and updated velocity estimates
integrated over the sampling interval.

rik|k−1 = rik−1|k−1 + (vik|k−1 + vik−1|k−1)
τ

2
(11)

5. Attitude Transformation

In most aerospace applications, it is useful to represent the platform attitude with respect to a locally-level
NED navigation frame. However, in the presented INS mechanization, a quaternion is used to represent
the platform’s attitude with respect to the Earth Centered Inertial (ECI) frame. To calculate the body-
to-navigation Euler angles, the DCM must be transformed into the navigation frame. This is done using
Eq. 12, where the Earth-Centered-Earth-Fixed (ECEF) to locally-level NED navigation ,Cne , and ECEF to
inertial, Cie, transformations are defined in Eq. 13 and Eq. 14, respectively, which can be found in numerous
texts.15,16

Cnb = Cne C
i
eC

i
b (12)

Cne =

-sin(Lat)cos(Lon) -sin(Lon) -cos(Lat)cos(Lon)

-sin(Lat)sin(Lon) cos(Lon) -cos(Lat)sin(Lon)

cos(Lat) 0 -sin(Lat)

 (13)
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Cie =

cos(ωie(t− t0) −sin(ωie(t− t0) 0

sin(ωie(t− t0) cos(ωie(t− t0) 0

0 0 1

 (14)

In Eq. 14, the Earth’s rotation rate with respect to an ECI frame is represented by ωie and to is the
reference epoch at which the ECI and ECEF frame are co-incident (e.g. J2000 is a typical ECI realization).
After transforming the body-to-inertial (i.e. ECI) DCM into the body-to-navigation (i.e. locally-level NED)
DCM, the platform’s traditional aircraft Euler angles are extracted using Eq. 15, Eq. 16, and Eq 17: where
Cnb is the body to navigation DCM, and the number subscript corresponds to the row and column location
within the DCM.17

φ = atan2(Cnb 31, C
n
b 32) (15)

θ = acos(Cnb 33) (16)

ψ = −atan2(Cnb 13, C
n
b 23) (17)

C. Error State Extended-Kalman Filter

Now that the PPP observation model and the INS mechanization have been explained, the data fusion
architecture can be discussed. In this study, a tightly-coupled error-state extended Kalman filter is adopted
from Groves.16 A schematic of the tightly coupled PPP/INS integration architecture can be seen in Figure
1.

]

Figure 1. Tightly-Coupled GPS/INS

Using the difference between the GPS observables and the INS predicted observables, the Kalman filter is
used to estimate the INS solution errors with the state vector as shown in Eq. 18: where δΨ is the estimated
attitude error, δv is the estimated velocity error, δr is the estimated position error, ba is the estimated
accelerometer sensor biases, bg is the estimated gyroscope sensor biases, δtu is the estimated receiver clock
bias, Tw is the estimated residual tropospheric delay along the zenith direction, and N is the estimated phase
bias for each satellite in view.
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x =



δΨ

δv

δr

ba
bg
δtu

Tw
N1
...

Nj



(18)

It can also be seen in Figure 1 that the estimated sensor biases are fed-back to correct the raw IMU
measurements. Feedback is done at every time that a GPS update data is collected in a closed-loop manner.
For the position and velocity estimated error states δv and δr are used to correct INS by subtracting them off
of the INS estimated position and velocity. The attitude estimated error-state is applied to the INS attitude
using a small-angle approximation as shown in Eq. 19

Cbi = (I − δΨ)Ĉbi (19)

where Ĉbi is the DCM populated with the INS estimated quaternion from Eq. 8.
To calculate INS error-state system matrix, F , the derivative of each error state model equation with

respect to each error state must be taken. In this section, the time derivative of the attitude, velocity, and
position are described. After defining the time derivatives of the error state equations, the total system
matrix and the state transition matrix (STM) is defined.

The time derivative of the attitude error can be seen in Eq. 20: where Ĉib is the estimated body to
inertial transition matrix, and bg is the estimated bias on the gyroscope.

δΨ̇i = Ĉibbg (20)

Because the velocity error is a function of the accelerometer bias, gyroscope bias, and the gravity model
that is employed, it is slightly more complicated than the attitude error. The time derivative of the velocity

error, δV̇ i, can be seen in Eq. 21. In Eq. 21 Ĉib is the body to inertial frame transformation matrix, f̂ i

is the IMU accelerometer measure specific force in the inertial frame δv/τ , δΨi is the estimated attitude
error, g is the estimated gravity vector for the platforms position, rees is the geocentric radius at the platform

position, r̂i is the INS estimated position vector, δri is the estimated position error, and ba is the estimated
accelerometer sensor biases.

δV̇ i = −(Ĉibf̂
i)δΨi +

2g

rees

r̂iib

|r̂iib
2
|
r̂i
T
δri + Ĉibba (21)

With INS mechanized in an inertial frame, the time-derivative of position is simply velocity. This means
that the time-derivative of the position error in the inertial frame is the velocity error.

δṙi = δV i (22)

Using the time derivative of each error state equation, the system matrix is defined in Eq. 23.

F i =


03 03 03 03 Ĉib

−(Ĉibf̂
i) 03

2g
rees

r̂i

|r̂i2|
r̂i
T

Ĉib 03

03 I3 03 03 03
03 03 03 03 03
03 03 03 03 03

 (23)
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The discrete System Transformation Matrix (STM) is then calculated using the system matrix and
Eq. 24: where F i is the system matrix, and τ is the discretization interval. For this study, a third-order
approximation of the STM was used as shown by the expansion in Eq. 25, as provided by Groves.16

Φ = eF
iτ (24)

Φi =


I3 O3 O3 O3 Ĉibτ

(F i21τ + 1
6F

i
23F

i
21τ

2) (I3 + 1
2F

i
23τ

2) (F i23τ + 1
6F

i
23

2
τ3) (Ĉibτ + 1

6F
i
23Ĉ

i
bτ

3) ( 1
2F

i
21Ĉ

i
bτ

2)

( 1
2F

i
21τ

2) (I3τ + 1
6F

i
23τ

3) (I3 + 1
2F

i
23τ

2) (1
2 Ĉ

i
bτ

2) ( 1
6F

i
21Ĉ

i
bτ

3)

03 03 03 I3 03
03 03 03 03 I3

 (25)

III. Simulation Environment

Using the models described in the previous section and a commercially available GPS constellation
simulation toolbox, SatNav-3.04 Toolbox,18 a simulation environment was developed to generate raw IMU
and GPS data. The simulation environment architecture can be seen in Figure 2. This section will provide
an overview of the simulation environment. First, we will discuss the inputs to the simulation, next we will
provide an overview of the GPS data generation, and finally we will discuss the generation of the IMU data.

Figure 2. Flowchart Depicting the Simulation Environment

A. Simulation Inputs

Before the generation of GPS and IMU data, several user-defined inputs are selected. One such input is the
defined flight path. For this study, four flight paths of varying dynamics were designed to replicate typical
data collection flights for NASA’s UAVSAR airborne radar platform. As an example, two of the flight paths
are shown in Figure 3 and Figure 4.

Other inputs that must be defined are the origin (e.g Lat., Lon., Height) of the flight and the time that
the flight occurs. These parameters are randomized for every simulation run so that the generated data
will have differing satellite geometry and atmospheric effects. In addition, the magnitude of the GPS error
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Figure 3. Flight Path 2
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Figure 4. Flight Path 3

sources were selected before each simulation trial (e.g., multipath intensity, troposphere, and thermal noise).
Finally, one of the four IMUs that were modeled for this study is selected for each run.

B. GPS Data Generation

Using the SatNav-3.04 Toolbox, dual-frequency pseudorange and carrier-phase observables are generated
at 10 Hz over the specified flight path. For this study, modifications were made that are pertinent to
common aircraft positioning error-sources. For example, the GPS simulator was modified to include attitude
dependent satellite visibility masking and carrier-phase breaks. Figures 5 and 6 are included to depict the
attitude dependent satellite masking. That is, when a satellite is obscured or nearly obscured due to a change
in platform attitude, it is masked from view and the the potential of a carrier-phase breaks is increased.
Figure 7 and Figure 8 are included to depict an example of carrier-phase breaks being added into the GPS
data.

Figure 5. Attitude Dependent Satellite Masking Figure 6. Number of Satellites in View for Flight

Figure 7. Phase Breaks for an Example Flight Figure 8. Roll for an Example Flight
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This simulation also includes an orbit and clock error model. The modeled errors were determined by
differing JPL’s International GNSS Service (IGS) submission with European Center for Orbit Determination
(CODE) submission. The error between the satellite ephemeris products are resolved in the radial, in-track,
and cross-track (RIC) components. After transforming the error into RIC components, it is fit using a
multi-sinusodial model. This process was completed for each satellite. The modeled satellite clock bias can
be seen in Fig. 9.

Figure 9. Error Between Broadcast Products of IGS and CODE Products

C. IMU Data Generation

To generate IMU data, a commercially available, tactical grade IMU was selected to model. The IMU was
modeled with a turn-on bias, a random walk component, and white noise. The modeled IMU was scaled, with
respect to Table 1, to simulated four IMUs of varying quality. The allan deviation of the four accelerometers
and four gyroscopes along the x-axis for twelve hour of data can be seen in Figure 10.
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Figure 10. Allan Deviation for Accelerometer and Gyroscope

D. Monte Carlo Study Design

To generate the results shown in the next section, a Monte Carlo style design was implemented. Each
simulation trail was initialized at random across the distributions specified in Table 1. One hundred sets
of data were generated. GPS and IMU data were generated for every flight at ten and two hundred hertz,
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respectively. The one hundred data sets were run through a PPP only filter and a tightly-coupled PPP/INS
filter to characterize the performance increase by including INS.

Table 1. Simulation Parameters

Error-Sources Model Parameters Notes

Accelerometer In-run Bias σ = 1mg , V RW = 0.2m/s√
hr

Scaled Honeywell HG1700AG72
SF = (1, 1

50 , 1
200 , 1

400 )

Gyroscope In-run Bias σ = 9.6e−6 radsec , ARW = 0.2 deg√
hr

Scaled Honeywell HG1700AG72
SF = (1, 1

50 , 1
200 , 1

400 )

Thermal Noise σρ = 0.32m , σφ = 0.16λ linear scale factor randomly se-
lected between [0,1]

Multipath 1.0 intensity: σ = 0.4m, τ = 15sec linear scale factor randomly se-
lected between [0,2]

Tropospheric Delay Percent of error assumed handled by broad-
cast correction

Modified Hopfield with linear
scale factor randomly selected
between [0,1.5]

Ionospheric Delay First order ionospheric effects mitigated with
dual-frequency

linear scale factor randomly se-
lected between [0.7,1]

Receiver Clock Bias Initial Bias σ = 30ns, δτb = 100ns Tuneable

Phase Ambiguity Random initialization and phase breaks corre-
lated with UAV attitude

likelihood varied from
[0.008,0.02]

Orbits Orbits σ = 5cm Description provided in section
III.B
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IV. Results

A. Absolute Positioning Performance

To quantify the potential benefits of INS inclusion for UAV navigation in scenarios that typically degrade
GPS performance, a sensitivity analysis of positioning performance was conducted under varying conditions.
The metric used to quantify the error for the first nine figures in this section is Root Mean Square (RMS).
The equation to calculate RMS can be seen in Eq. 26: where n is the number of data points, X is the actual
value of the data, and X̂ is the estimated value of the data.

XRMS =

√√√√ n∑
i=1

1

n
(X2(i)− X̂2(i)) (26)

The median of the RMS positioning error for the one hundred flight can be seen in Fig. 11. From Fig.
11 it should be noted that the PPP/INS filter outperformed PPP only filter in east, north and vertical
directions, with the most notable improvement being in the vertical direction. The statistics for the one
hundred flights can be seen in Table 2, Table 3 and Table 4.
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Figure 11. Median of Per Flight RMS Error

East

( cm )

North

( cm )

Vertical

( cm )

Min 4.08 4.89 16.20

Max 198.07 259.77 407.50

Mean 62.85 65.25 146.52

Median 50.49 55.07 137.39

Std 44.71 46.76 78.23

Table 2. PPP Only Statistics

East

( cm )

North

( cm )

Vertical

( cm )

Min 5.65 2.94 17.15

Max 137.36 121.80 310.95

Mean 37.88 25.30 70.55

Median 34.90 20.99 53.82

Std 24.23 19.38 55.81

Table 3. PPP/INS Statistics

East

( cm )

North

( cm )

Vertical

( cm )

Min -55.42 -64.12 -206.92

Max 158.02 221.40 343.94

Mean 24.96 39.93 75.97

Median 16.94 31.76 69.62

Std 32.65 38.75 85.31

Table 4. (PPP - PPP/INS) Statistics

The next eight figures in this section depict the reduction in RMS error through the inclusion of INS.
The reduction in error was calculated by taking the difference of the positioning output for the PPP only
filter and the PPP/INS filter. Figure 12 shows the median of the per flight RMS error reduction due to the
inclusion of INS.

From Fig. 12 it can be seen that the error reduction in the East, 17 centimeters, and North, 32 centimeters,
directions are similar. The error reduction is the vertical direction is the most notable at 70 centimeters.

Figure 13 depicts the RMS error reduction distribution in the east, north and vertical directions for the
100 trials. This was done by calculating the cumulative distribution function (CDF) of the RMS positioning
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Figure 12. Median of Per Flight RMS Error Reduction from INS

error reduction for all of the simulated flight due to INS.

East (centimeter)

-50 0 50 100

F
ra

ct
io

n
 o

f 
T

ri
a

ls
 

0

0.5

1
CDF of RMS Positioning Error Reduction from INS

North (centimeter)

-50 0 50 100F
ra

c
ti

o
n

 o
f 

T
ri

a
ls

0

0.5

1

Vertical (centimeter)

-50 0 50 100 150 200F
ra

c
ti

o
n

 o
f 

T
ri

a
ls

0

0.5

1

Figure 13. CDF of RMS Positioning Error Reduction form INS

From 13 it should be noted that the median error is as shown in Fig. 12; however, there are situations
where the inclusion of INS can reduce the vertical positioning error by as much as 200 centimeters. However,
there are times where the CDF is negative, meaning that the PPP-only filter outperformed the PPP/INS
filter. For the cases in which PPP-only outperformance PPP/INS it is expected that that multiple satellite
loss of lock or phase breaks may have occurred early in the filter run, before the phase biases, positioning,
residual troposphere delay, and IMU sensor biases converged, leaving the PPP/INS solution to ”hold on” to
a poor solution for a longer period than the PPP-only filter; however these flights need further review.

Now that the median RMS error reduction has been discussed, it is of interest to discuss the reduction
of the RMS error due to INS with respect to the input parameters (e.g., flight path, IMU selection and GPS
error sources). Figure 14 shows the median RMS error reduction in the east, north and vertical directions
with respect to the flight path selected. The four flight paths were designed to have increasing dynamics
(i.e., flight path one is the most docile and flight path four has the highest dynamics). Figure 14 does not
show a definitive trend in positioning improvement as path dynamics increase. The likely reason for this
lack of trend is that the dynamics did not vary enough between paths.

Figure 15 shows the median RMS error reduction in the east, north and vertical directions with respect to
the number of phase breaks during a flight. From Fig. 15 it should be noted that there is a clear correlation
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Figure 14. Median of Per Flight RMS Error Reduction from INS by Flight Path

between the number of phase breaks and the RMS positioning error reduction due to INS.
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Figure 15. Median of Per Flight RMS Error Reduction from INS by Number of Phase Breaks

Figure 16 shows that median of the per flight RMS error reduction from INS by IMU type. As all of the
IMUs for this study were modeled based upon error characteristics for commercially available tactical grade
IMUs with similar error characteristics (e.g., all IMUs were scaled from IMU 1), there is not a definitive
trend in positioning improvement.

Figure 17 depicts the RMS positioning error reduction due to INS with respect to the magnitude of the
troposphere. Where the troposphere is modeled using the Modified Hopfield model and scaled at random,
for each simulation trial, with respect to Table 1. From Fig. 17 a clear trend is shown, which is that the
magnitude of the RMS error reduction is dependent upon the magnitude of the troposphere.

The dependence of the RMS positioning error reduction due to INS as a function of multipath can be
seen in Figure 18. Multipath is modeled as a Gauss-Markov process with a standard deviation of 0.4 meters
and a time constant of 15 seconds, as described in Table 1. This error source is linearly scaled for each
simulation trial.

B. Sensitivity to PPP Product Quality

Figure 19 depicts the benefit of including INS as the quality of the PPP products is reduced. That is, for this
analysis, the GPS data was regenerated in the same manner as previously describe; however, the magnitude
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Figure 16. Median of Per Flight RMS Error Reduction from INS by IMU
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of the satellite error was randomly selected from four magnitude (e.g., Product 1 = 0.5 cm, Product 2 = 10
cm, Product 3 = 20 cm, and Product 4 = 30 cm).
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Figure 19. Median of Per Flight RMS Error Reduction from INS by PPP Product

C. Attitude Estimation Performance

An implicit benefit of PPP/INS over single antenna PPP-only is that platform attitude is estimated in the
filter. Figure 20 shows the typical attitude estimation performance of a single simulation trial.
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Figure 20. Example Attitude Estimation Error over a Single Flight

As shown in Fig. 20 roll, pitch and yaw are all estimated at sub-0.1 degree accuracy. A cumulative
distribution of the attitude estimation performance of the 100 trials is shown in Fig. 21.

As illustrated in Fig. 21 the median attitude estimation error is a few hundredths of a degree for roll
and pitch, and an order of magnitude worse for the yaw angle. Poor yaw estimation is expected for flight
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Figure 21. Cumulative Attitude Estimation Performance over 100 Flights

profiles that are predominately steady-level flight. Just as in positioning, there are a handful of PPP/INS
flights that have poor attitude estimation performance.

D. Solution Convergence

As mentioned in the literature review, PPP convergence is often cited as a downside to the PPP approach.
Figure 22 was created by averaging the absolute phase bias estimate from the true simulated phases biases,
epoch wise, for all 100 trials.
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Figure 22. Average Absolute Phase Bias Estimation Error

As shown in Figures 22, the PPP/INS solution converges quicker than the PPP-only solution, which is
important for reaching the performance similar to that of RTK.
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E. Smoothness of Positioning Solution

In general, the PPP/INS improvement is attributed to the smoother positioning performance. This claim
can be substantiated by conducting a frequency analysis of the positioning error time-series. For example,
Fig. 24 shows a periodogram of the amplitude of the position error in the vertical-axis for a typical flight
trial. The periodogram can be evaluated up to 5Hz since the positioning residuals are available at 10Hz (i.e.
the GPS update rate).

Figure 23. Periodogram of Vertical Position Error for Single Flight

As shown in Fig. 24, at the low frequencies the positioning performance is the same, and there is
no noticeable difference in the absolute positioning performance, however, at the higher frequencies the
PPP/INS error amplitude is reduced when compared to PPP. This analysis suggests smoother positioning
from PPP/INS, which is critical for feedback control systems.

V. Conclusion

This article considered the performance sensitivity of PPP/INS and detailed the INS algorithm formula-
tion that is currently being implemented in NASA JPL’s RTG-X PPP software. The benefit of incorporating
INS when confronted with scenarios that typically degrade GPS performance including poor satellite geom-
etry and an increase level of phase breaks was characterized with the use of a Monte Carlo analysis. The
inclusion of INS is shown to offer a smoother solution leading to better absolute positioning performance
in an RMS and median sense over the 100 trials. PPP/INS also exhibited the ability to initially converge
quicker, which is critical for PPP. In addition, the performance increase sensitivity for including tactical
grade INS when confronted with poor PPP orbit product quality and increased path dynamics was demon-
strated. In the future, this work will be further developed into an experimental evaluation of the presented
approach using data collected by NASA’s UAVSAR aircraft. Finally, this work will aid in the on-going effort
to include high-grade INS processing within the Jet Propulsion Laboratory’s RTG-X PPP software.
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