TABLE OF CONTENTS

Longwall Mining

1. Pre-driven experimental longwall recovery room under weak roof conditions - design, implementation, and evaluation, S. Tadolini, Excel Mining Systems, Inc., Cadiz, OH and Y. Zhang and S. Peng, West Virginia University, Morgantown, WV 1

2. Longwall mining-induced abutment loads and their impacts on pillar design and entry stability, J. Chen and M. Mishra, RAG American Coal Holding, Inc., Waynesburg, PA, E. Zahl and J. Dunford, NIOSH Spokane Research Lab, Spokane, WA, and R. Thompson, RAG Twentymile Coal Company, Oak Creek, CO ... 11

4. The NIOSH shield hydraulics inspection and evaluation of leg data (SHIELD) computer program, T. Barczak, NIOSH - Pittsburgh Research Lab, Pittsburgh, PA and D. Conover, NSA Engineering, Golden, CO 27

5. Study on top-coal loss and the optimum drawing interval of longwall top-coal caving mining, Q. Fu, Y. Fan, and G. Jia, Beijing Mining Research Institute of CCRI, P.R. China and Z. Zhang and W. Shi, Wang Zhuang Coal Mine of Lu-an CMA, P.R. China ... 39

7. Re-use of rectangular bolted roadways in a cover depth > 1000 m, K. Opolony, Deutsche Stein Kohle AG, Germany and H. Wittaus, Deutsche Montan Technologie GmbH, Germany ... 53

8. Numerical modeling of the gob loading mechanism in longwall coal mines, K. Morsy and S. Peng, West Virginia University, Morgantown, WV ... 58

Pillar/Pillar Extraction

9. Deep cover pillar extraction in the U.S. coalfields, F. Chase and C. Mark, NIOSH Pittsburgh Research Lab, Pittsburgh, PA and K. Heasley, West Virginia University, Morgantown, WV .. 68
10. Evaluation of pillar recovery in southern West Virginia, C. Mark, NIOSH Pittsburgh Research Lab, Pittsburgh, PA, G. Karabin, J. Zelanko, and T. Hoch, MSHA-PS&HTC, Pittsburgh, PA, and F. Chase, NIOSH Pittsburgh Research Lab, Pittsburgh, PA .. 81

Roof Bolting

13. Anchorage pull testing for fully grouted roof bolts, C. Mark, C. Compton, D. Oyler, and D. Dolinar, NIOSH Pittsburgh Research Lab, Pittsburgh, PA .. 105

14. Comparison of some aspects of bolting mechanisms between fully-grouted resin and tensioned bolts in underground mine entries, A. Yassien, Y. Zhang, J. Han, and S. Peng, West Virginia University, Morgantown, WV ... 114

15. Eclipse system improves resin anchored rebar bolting, A. Campoli, P. Mills, and K. Dever, Fosroc Inc., Georgetown, KY ... 126

16. Design considerations for tensioned bolts, Y. Zhang and S. Peng, West Virginia University, Morgantown, WV .. 131

17. Field testing of the fully grouted thrust tension bolts, K. Unrug and E. Thompson, University of Kentucky, Lexington, KY 141

18. Improvement in pre-tensioning of strand bolts in Australian coal mines, M. Rataj, DYWIDAG-Systems International, Australia 145

20. Support of coal mines in the United Kingdom, J. Arthur, Health and Safety Executive, United Kingdom .. 161

21. The use of NDT methods to determine the condition of rockbolt support during the recovery of a previously flooded coal mine roadway at Thoresby Colliery, B. Clifford and A. Bloor, Rock Mechanics Technology, Ltd., United Kingdom, J. Bowler, Thoresby Colliery, United Kingdom and D. Bigby, Rock Mechanics Technology, Ltd., United Kingdom .. 170

22. Rockbolted support of retreat longwall gateroads at 1000m depth: a case history, K. Brandt, Deutsche Steinkohle AG, Germany and J. Cassie, Rock Mechanics Technology Ltd., United Kingdom 179

21st International Conference on Ground Control in Mining

Stone

25. Stone mine design in highly fractured rock, V. Scovazzo, John T. Boyd Co., Pittsburgh, PA .. 201
27. Utilization of ground-penetrating radar to determine roof competency in underground limestone mines, T. Ross, NSA Engineering, Inc., Golden, CO and C. Joyce, J.M. Huber Corporation, Macon, GA .. 214
28. An examination of the Loyalhanna limestone's structural features and their impact on mining and ground control practices, A. Iannacchione and P. Coyle, NIOSH Pittsburgh Research Lab, Pittsburgh, PA .. 218

Surface/Highwall Mining

30. Overview of safety considerations with highwall mining operations, G. Gardner and K. Wu, MSHA-PS&HTC, Pittsburgh, PA .. 236
31. Highwall monitoring to combat rockfall accidents at opencast collieries, J. Latilla, Ingwe Collieries, South Africa .. 242

Floor Heave/Stability

32. Seepage and reinforcement behavior of grouting into slaking-prone mine tunnel floor, H. Shimada, T. Sasaoka, S. Kubota, and Kikuo Matsui, Kyushu University, Fukuoka, Japan .. 251
33. Floor heave in shallow room-and-pillar mining, A. Zingano, J. Koppe, and J. Costa, Federal University of Rio Grande do Sul, Brazil .. 257
34. Analysis of a stability problem in an underground coal mine due to floor conditions, M. Nombe and K. Unrug, University of Kentucky, Lexington, KY .. 264
In-situ Stress Measurement

35. Comparison of acoustic emission and stress measurement results to evaluate the application of the kaiser effect for stress determination in underground mines, L. Kent and D. Bigby, Rock Mechanics Technology, Ltd., United Kingdom and J. Coggan and J. Chilton, Camborne School of Mines, University of Exeter, United Kingdom .. 270

36. Acoustic scanner analysis of borehole breakout to define the stress field across mine sites in the Sydney and Bowen Basins, Australia, S. MacGregor, SCT Operations Pty. Ltd., Australia 278

Roof Geology Assessment

38. New developments with the coal mine roof rating, C. Mark, G. Molinda, and T. Barton, NIOSH Pittsburgh Research Lab, Pittsburgh, PA ... 294

39. Application of geotechnical and geophysical parameters to improve planning reliability in roadway drivage, N. Polyos, Deutsche Steinkohle AG, Germany and S. Peters, Deutsche Montan Technologie GmbH, Germany ... 302

Ground Control

41. Empirical and analytical design of large openings at a proposed national underground science laboratory, K. Zipf, Jr., D. Tesarik, and J. Johnson, NIOSH Spokane Research Lab, Spokane, WA ... 318

42. Shear mechanism for mining-induced fractures applied to rock mechanics of coal mines, B. White, NIOSH Spokane Research Lab, Spokane, WA ... 328

43. Evaluating techniques for monitoring rock falls and slope stability, E. McHugh and J. Girard, NIOSH Spokane Research Lab, Spokane, WA ... 335
21st International Conference on Ground Control in Mining

44. Developments in sealant support systems for ground control, D. Pappas, T. Barton, and E. Weiss, NIOSH Pittsburgh Research Lab, Pittsburgh, PA ... 344

45. Stability control of clusters of deep openings around shaft bottom and theory of rock deformation, Y. Gao, D. Zhai, and Q. Zhang, Shandong University of Science and Technology, P.R. China 354

Surface Subsidence

46. The use of pneumatic stowing in Germany considering subsidence aspects, A. Preusse and C. Herzog, Aachen, University of Technology, Germany and E. Grüen and J. Bock, Deutsche Steinkohle AG, Germany 357

47. A 3D semi-analytical approach for subsidence prediction and stress analysis in coal mining, L. Liu, H. Liu, C. Lian, and Z. Zhu, Hehai University, P.R. China, B. Gu, Shandong Costume Profession Institute, P.R. China and J. Chen, Hehai University, P.R. China 363

48. Theory and technology of mining subsidence control by grouting the overlying strata separations with fine-coal ash, Y. Gao, Q. Zhang, and X. Niu, Shandong University of Science and Technology, P. R. China and Y. Zhong and J. Li, KaiLuan Group Corporation, P. R. China ... 369

49. Surface subsidence due to the combined effects of underground coal mining and groundwater withdrawal, S. Cheng and Y. Chen, Shandong University of Science and Technology, P.R. China 374

Author's Index .. 377