"Programming Economic Modeling Software" PNGE 441: Oil and Gas Property Evaluation

Project #1

Brent E. Criser November 12, 2002

West Virginia University

Table of Contents

Executive Summary	Page 3
Introduction	Pages 3-4
Background	Page 4
Problem Statement	Page 4
Methodology	Pages 5-6
Procedure	Page 6
Results	Pages 6-9
Conclusions	Page 10
References	Page 11
Source Code	Pages 12-19

Executive Summary

The purpose project was to develop a software application to determine various economic parameters including present value, net present value, as well as discount cash flow rate of return. We were given the cash flow, and the investment, both monetary, and equipment. Using this data, a program was written to calculate these necessary parameters. The user can input an interest rate, and increment this interest rate by fixed amounts so that a present value profile can be generated. The present value profile is also generated by the program. This program is also capable of calculating the DCFROR, an important indicator, which lets you determine the actual economic limitations of your project.

Introduction

Year	Investment(M\$)	Revenue (M\$)	Operating Cost (M\$)
0	-1,000		
1		540	\$100
2		400	\$83
3		380	\$80
4		350	\$63
5		300	\$59
6		200	\$50
7		185	\$50
8		160	\$40
9		100	\$30
10		56	\$10
Total		2,671	

The cash flow of the project was provided as follows:

The initial \$1,000,000 investment includes all necessary elements to have a producing well in the oil industry. Land, equipment (pumping unit at \$250,000 initial cost with 6 year life, as well as a \$15,000 salvage value), drilling, and completion costs are all included in this investment. The tax rate used in the calculations was 46%. The

program is not limited, however to this example cash flow. It will calculate PV, NPV, and DCFROR for any cash flow provided it up to 10 years.

Background

Several yardsticks are used to measure the profitability of a project. These yardstick are also used in mutually exclusive decisions. Net present value is one of these yardsticks. It shows the value of the project in todays dollars, which is a way to normalize projects of different costs, and durations to maximize the potential for profit.

Discount cash flow rate of return is also a good economic indicator. It is the interest rate at which the project breaks even, or in other words, makes no money. This is valuable, because when you find the DCFROR, you will know the highest possible interest rate that you can borrow money, and still make a profit. For some oil companies, a DCFROR or 25% or higher is desirable.

However useful these indicators are, they are useless without production data, offset costs, as well as nominal prices of hydrocarbons. For these sets of data, many things can be used, offset well data, and decline curve analysis may be used to predict well performance. Calculating offset, and operational costs is also necessary, but is beyond the scope of this project. As it is impossible to predict the price of oil in the future, an educated informed, and reasonable nominal price should be chosen. Preferably a good nominal price should be one that is inline with historical pricing data.

Problem Statement

Given a cash flow, we were to write a computer program that calculates net present value, discount cash flow rate of return, as well as making a present value profile for that cash flow.

4

Methodology

First, you must make an analysis of the cash flow to determine taxes, and hence the present value of the project at that given year. These present values are summed to yield the total net present value of the project.

Year	Investment (M\$)	Revenue (M\$)	Operating Cost (M\$)	Depreciation (M\$)	Income Tax (\$M)	NCF (M\$)	NPV (M\$)
0	-\$1,000					-\$1,000	-\$1,000
1		\$540	\$100	\$41.67	\$183.23	\$256.77	\$238.85
2		\$400	\$83	\$41.67	\$126.65	\$190.35	\$164.71
3		\$380	\$80	\$41.67	\$118.83	\$181.17	\$145.83
4		\$350	\$63	\$41.67	\$112.85	\$174.15	\$130.40
5		\$300	\$59	\$41.67	\$91.69	\$149.31	\$104.00
6		\$200	\$50	\$26.67	\$56.73	\$93.27	\$60.43
7		\$185	\$50		\$62.1	\$72.9	\$43.94
8		\$160	\$40		\$55.2	\$64.8	\$36.33
9		\$100	\$30		\$32.2	\$37.8	\$19.72
10		\$56	\$10		\$21.16	\$24.84	\$12.05
Total		\$2,671				\$245.34	-\$43.73

NOTE: Straight line depreciation was used for depreciating the pump in this example.

Equations utilized were:

Income Tax = [Re venue – Operating Cost – Depreciation]
$$\times$$
 46%

NetCashFlow = Revenue – Operating Cost – Income Tax

$$\Pr esent \ Value = \frac{NCF}{\left(1+i\right)^n}$$

*where i is the interest rate, and *n* is the number of years .

These present values are then summed to calculate the NPV. To calculate the DCFROR of this project, a do until loop was utilized to iterate on interest rate until the NPV of the project was 1 dollar.

Procedure

Net cash flow was calculated by importing a text file that was prepared previously to running the program by the user. These values are read into the program, andby the simple cluck of a button, the present value, and hence the net present values of the project were found. The default interest rate of this program is 7.5%, however, it can be an arbitrary rate, decided by the user.

The present value profile is generated by clicking on the graph tab of the program. The user is then able to choose what parameters he would like to graph versus other parameters. For present value profile, NPV (on the Y axis) versus i (on the x axis) must be selected via drop down menus. If the wrong combinations of parameters are chosen, the program will guide the user on how to correctly use the graphs. The user is also able to enter a beginning interest rate, an increment, as well as the number of points they desire After the correct parameters are chosen by the user, simply click the graph button, and the PVP will be generated.

The DCFROR in this program is not graphed, however, it is calculated, and displayed via clicking the calculate the DCFROR button on the main tab of the program. **Results**

From the previous table which was shown in the methodology section of this report, a NPV was calculated to be a negative 43,724 dollars. This particular cash flow

6

also had a DCFROR of about 6.14%. Please see following screen prints to view program.

Net Present V	alue Calculat)r			<u> </u>
Open NCF File			NPV	Graph	
Exit	est Rate	7.5	I		
Year	NCF	PV	Calculate NPV		
			Calculate DCFROR		
	Calculate P	v]		
Figure 1 – U	Jser's abi	lity to ope	en files contain	ning data	

Open				<u>? ×</u>
Look jn:	CF Projec	t 💌	🗕 🗈 💣 🎟	
My Recent Documents Desktop My Documents My Computer	ExampleNCF	pe: Text Document te Modified: 11/15/2002 12:52 PM te: 118 bytes		
- S	File <u>n</u> ame:	ExampleNCF	•	<u>O</u> pen
My Network Places	Files of <u>type</u> :	NCF File	_	Cancel
		· · · · · · · · · · · · · · · · · · ·		

Figure 2- opening the pre-made NCF file

🖷 Net Present Value Calculator						_ 🗆 🗵	
File							
[Ma	nin			NPV	Graph	1
An	nual Inter	est Rate	7.5				
[Year	NCF	PV		Calculate NPV	-43724.36	
	0	-1000000	-1000000				_
	1	256766.7	238852.8		Calculate DCFROR	6.14	
	2	190346.7	164713.2				
	3	181166.7	145832				
	4	174146.7	130401.1				
	5	149306.7	104000.9				
	6	93266.67	60433.21				
	7	72900	43940.83				
	8	64800	36333.5				
	9	37800	19715.86				
	10	24840	12052.22				
		Calculate	PV				

Figure 3 – PV, NPV, and DCFROR results printed to screen

Figure 3 – PV, NPV, and DCFROR results printed to screen						
🕞 Net Prese	nt Value Calcu	tor	- O ×			
File						
Main NPV Graph						
AIR	NPV	APR				
2.5	134252.49	Initial Rate 2.5				
3.5	94373-15					
4.5	56801.13	Increment 1				
5.5	21363.59	Deinte 10				
6.5	-12097.04	Points				
7.5	•43724.36					
8.5	-73649.56	Calculate NPV Grid				
9.5	101992.67					
10.5	128863.50	Save NPV as Text File				
11.5	154362.82					

Figure 4 – NPV calculated at different interest rates.

Figure 5 – Cash Flow Diagram

Figure 6 – Present Value Profile. Note DCFROR at 6.14%

Final Conclusions

From hand calculations, and comparison to the answers yielded by the program, I conclude that this program is accurate in calculating both DCFROR as well as present value, as well as net present value. This program was also tested against examples in the text, and was also correct. Hence, This program will work properly given any cash flow provided by the user.

References

Oil Property Evaluation, Second Edition by Robert S. Thompson and John D. Wright. Copyright 1984, 1985 by Thompson-Wright Associates, Golden, Colorado 80402.

<u>Appendix</u>

Source Code

Option Explicit Dim NCF() As Single Dim NumberofCases As Integer

Private Sub cmdDCFROR_Click() Dim i As Integer

Dim AIR As Single Dim NCF As Single Dim Year As Integer Dim pv As Single Dim NPV As Single

AIR = 0NPV = 2

Do Until NPV < 1

AIR = AIR + 0.0001NPV = 0

With grdMain For i = 1 To NumberofCases .Row = i .Col = 0 Year = Val(.Text)

> .Col = 1 NCF = Val(.Text) $pv = NCF / (1 + AIR) ^ Year$ NPV = NPV + pv

Next i End With

Loop

txtDCFROR.Text = Round(AIR * 100, 2)

End Sub

Private Sub cmdSaveNPV_Click()

Dim NoOfpoints As Integer Dim NPVFile As String

```
Dim i As Integer
NoOfpoints = Val(txtPointAIR.Text)
With cdgOpenSaveFile
```

```
.DialogTitle = "Save"
.CancelError = False
.Filter = "Text File|*.txt|All Files (*.*)|*.*"
.ShowSave
If Len(.FileName) = 0 Then Exit Sub
NPVFile = .FileName
```

Open NPVFile For Output As #1

```
With grdNPV
For i = 0 To NoOfpoints
Print #1, .TextMatrix(i, 0), .TextMatrix(i, 1)
Next i
End With
```

Close #1

End Sub

Private Sub Form_Load()

Call PrepareGrid Call PrepareNPVGrid

End Sub

Private Sub PrepareGrid()

With grdMain

```
.Row = 0
.Col = 0
.CellAlignment = 4
.CellFontBold = True
.Text = "Year"
```

.Row = 0 .Col = 1 .CellAlignment = 4 .CellFontBold = True

```
.Text = "NCF"

.Row = 0

.Col = 2

.CellAlignment = 4

.CellFontBold = True

.Text = "PV"
```

End Sub

Private Sub PutNcfInGrid()

Dim i As Integer

```
With grdMain
.Rows = NumberofCases + 1
For i = 1 To NumberofCases
```

```
Row = i

Col = 0

CellAlignment = 4

Text = i - 1

Col = 1
```

```
.CellAlignment = 4
.Text = NCF(i)
Next i
```

End With

End Sub

Private Sub cmdPV_Click()

Dim i As Integer Dim MyAIR As Single Dim MyNCF As Single Dim MyYear As Integer Dim pv As Single

MyAIR = 0.01 * Val(txtAIR.Text)

With grdMain For i = 1 To NumberofCases

```
.Row = i

.Col = 0

MyYear = Val(.Text)

.Col = 1

MyNCF = Val(.Text)

pv = MyNCF / (1 + MyAIR) ^ MyYear

.Col = 2

.CellAlignment = 4

.Text = Round(pv, 2)

Next i
```

End Sub

Private Sub cmdNPV_Click()

Dim MyAIR As Single MyAIR = Val(txtAIR.Text) txtNPV.Text = Round(NetPresentValue(MyAIR), 2)

End Sub

Private Function NetPresentValue(AIR As Single) As Double Dim i As Integer Dim pv As Single Dim MyYear As Integer Dim MyNCF As Single NetPresentValue = 0 With grdMain

For i = 1 To NumberofCases MyYear = Val(.TextMatrix(i, 0)) MyNCF = Val(.TextMatrix(i, 1)) pv = MyNCF / (1 + AIR / 100) ^ MyYear NetPresentValue = NetPresentValue + pv Next i End With End Function

Private Sub cmdDrawGraph_Click()

Dim i As Integer Dim j As Integer Dim NoDataSets As Integer

```
If cmbYAxis.Text = "NPV" Then
    If cmbXAxis.Text <> "AIR" Then
      i = MsgBox("The X axis should be AIR", vbOKOnly, "Error")
      Exit Sub
    End If
    NoDataSets = Val(txtPointAIR.Text)
  Else
     If cmbXAxis.Text <> "Year" Then
      i = MsgBox("The X axis should be Year", vbOKOnly, "Error")
      Exit Sub
    End If
    NoDataSets = NumberofCases
End If
If cmbYAxis.Text = "NPV" Then
    NoDataSets = Val(txtPointAIR.Text)
  Else
    NoDataSets = NumberofCases
End If
ReDim XAxis(NoDataSets) As Single
ReDim YAxis(NoDataSets) As Single
For i = 1 To NoDataSets
  Select Case cmbXAxis.Text
    Case "Year"
      XAxis(i) = Val(grdMain.TextMatrix(i, 0))
    Case "AIR"
      XAxis(i) = Val(grdNPV.TextMatrix(i, 0))
  End Select
    Select Case cmbYAxis.Text
      Case "NCF"
         YAxis(i) = Val(grdMain.TextMatrix(i, 1))
      Case "PV"
         YAxis(i) = Val(grdMain.TextMatrix(i, 2))
      Case "NPV"
         YAxis(i) = Val(grdNPV.TextMatrix(i, 1))
    End Select
Next i
With chrMain
  If optBarGraph.Value = True Then
    .chartType = VtChChartType2dBar
  Else
    .chartType = VtChChartType2dLine
  End If
```

```
.ColumnCount = 1
.RowCount = NoDataSets
For i = 1 To NoDataSets
.Row = i
.RowLabel = XAxis(i)
.Data = YAxis(i)
Next i
```

End Sub

Private Sub PrepareNPVGrid()

```
With grdNPV
```

```
.Row = 0
.Col = 0
.ColAlignment(0) = 4
.CellFontBold = True
.Text = "AIR"
```

```
.Row = 0
.Col = 1
.ColAlignment(1) = 4
.CellFontBold = True
.Text = "NPV"
```

End With

End Sub

Private Sub cmdCalculateNPVGrid_Click()

Dim i As Integer Dim AIR As Single Dim Increment As Single Dim NoOfpoints As Integer

AIR = Val(txtStart.Text) Increment = Val(txtIncrement.Text) NoOfpoints = Val(txtPointAIR.Text)

With grdNPV

```
.Rows = NoOfpoints + 1
For i = 1 To NoOfpoints
.TextMatrix(i, 0) = AIR
.TextMatrix(i, 1) = Round(NetPresentValue(AIR), 2)
AIR = AIR + Increment
```

Next i

End With

End Sub

Private Sub mnuExit_Click()

End

End Sub

Private Sub mnuNcfFile_Click()

Dim NCFFile As String Dim Count As Integer

Count = 0

```
With cdgOpenSaveFile

.DialogTitle = "Open"

.CancelError = False

.Filter = "NCF File|*.txt|AllFiles(*.*)|*.*"

.ShowOpen

If Len(.FileName) = 0 Then Exit Sub

NCFFile = .FileName
```

End With

Open NCFFile For Input As #1

Do Until EOF(1) Count = Count + 1 ReDim Preserve NCF(Count) Input #1, NCF(Count) Loop

Close #1 NumberofCases = Count Call PutNcfInGrid

End Sub

Private Sub mnuNPV_Click()

Call cmdSaveNPV_Click

End Sub