West Virginia University

College of Engineering and Mineral Resources

Department of Petroleum and Natural Gas Engineering

Production Data Analysis in a Developed Field in

Carthage, Texas

Graduate Students Group II

Camilo Calderon

Cesar Silva

Yasaman Khazaeni

Dec, 2007

Table of Contents

1. Executive Summary	3
2. Introduction	4
3. Theoretical Background	6
4. Methodology	10
5. Results and Recommendations	25
6. Conclusions and Recommendations	52
7. References	54
8. Appendix A	55
9. Appendix B	115

<u>1. Executive Summary</u>

Intelligent Production Data Analysis (IPDA), is capable of tracking the sweet spots in the field with time in order to allocate the most probable locations that may still have reserves. The Production data used in this project is from twenty wells in a field located in the north-east of Texas.

In this project three major steps have been completed. First, the application of conventional production data analysis such as "Decline Curve" and "Type Curve Matching" followed by using intelligent systems "Fuzzy Pattern Recognition" in order to classify the field based on potential sweet spots for infill drilling and to identify the underperformer wells to be recommended for workover or stimulation.

After the analysis is completed three locations are recommended for infill drillings. Cesarito, Camilito and Yasito are the proposed names of the wells.

Five wells are proposed for stimulation and four for workover. The criteria behind this selection are based on relative values of permeability and Reserves. Low permeability and high Reserves for stimulation and high permeability and low reserves for work over.

After performing economical analysis based on all above considerations the overall value of the asset is estimated to be \$48,381,470

A model in CMG is built based on the available data from the field and the analysis. A sensitivity analysis is conducted to evaluate the reserves of some parameters changes on the production.

2. Introduction

The only type of data that can be easily found in many of the mature fields is production rate data.

Oil and Gas Production started at a time when reservoir characterization was not a priority. At the time being, better recovery of the fields requires reservoir characterization.

The method used in IPDA for characterization of mature fields is only based on production rate data. This methodology integrates conventional production data analysis like "Decline Curve Analysis", "Type Curve Matching", with techniques developed based on intelligent systems such as neural networks, genetic algorithms and fuzzy logic in order to model the fluid flow in the reservoir as a function of time.

2.1 Project Objective

- Application of Intelligent Production Data analysis (IPDA) to a mature field in order to estimate the Recoverable Reserves.
- 2. Recommend infill drilling locations and possibly remedial operations on existing wells based on the economical analysis.
- 3. Obtain the overall value of the asset.

3. Theoretical Background

The Application of Intelligent Production Data Analysis requires having a theoretical background of the methods. In this chapter a summary of these concepts provides some information that would be beneficial to easily follow the methodology.

3.1 Decline Curve Analysis

Production Prediction and Reserve Estimation of a reservoir are two of the most important challenges we have in Oil and Gas Industry. Several methods have been developed during years. Decline Curve Analysis is introduced as one of the less demanding approaches. In this method only production history is needed. The very first development of this method is based on the empirical Arps exponential, hyperbolic, and harmonic equations. The empirical Arps decline equation represents the relationship between production rate and time for oil wells during pseudo steady state period and is shown as follows

$$q_t = \frac{q_i}{\left(1 + bD_i t\right)^{\frac{1}{b}}}$$
(3-1)

In which

 Q_t = Oil Production rate at time *t* and

- q_i = Initial Oil Production rate.
- b = Hyperbolic Exponent

 $D_i =$ Initial Decline Rate

When b=0, the decline is exponential, b=1, the decline is harmonic and for 0 < b < 1, the decline is said to be hyperbolic. The method is still being used because it is very simple and it doesn't need any reservoir or well's data.

Although the Arps decline curve analysis approach was proposed around sixty years ago a large number of studies on production decline analysis are still using this method. A lot of attempts have been taken to interpret the Arps decline equation theoretically. Many derivations are based on a single phase flow which applies only to under saturated oil wells.

Later Fetkovich recommended fitting Arps equation only to the pseudo steady state (non-transient) portion of the rate time data. He combined the transient rate and the pseudo steady-state decline curves in a single graph. Also he related the Arps empirical equations to the single-phase flow solutions and tried to provide a theoretical basis for the Arps equations.

3.2 Type Curve Matching

In 1973, Fetkovich proposed a dimensionless rate-time type curve for decline curve analysis of wells producing at constant bottomhole pressure. These type curves were developed for slightly compressible liquids. These type curves combined analytical solutions to the flow equation in the transient region with empirical decline curve equations in the pseudo-steady state region. The analysis procedure provided estimates of formation permeability, k, and drainage radius, r_e , instead of the traditional decline curve analysis parameters q_i and D_i . This approach to decline curve analysis, now commonly referred to as "advanced decline curve analysis", has become widely used as a tool for formation evaluation and reserves estimation.

Basically, production decline type curve is a log-log plot of a family of production decline curves with the dimensionless flow rate q_d showing on ordinate and the dimensionless time t_d showing on abscissa.

One should try to match the real data plotted on a log-log paper with the same scale as the type curve with one of the type curves. Having the best fit a match point can be selected to dimensionalize the dimensionless values.

The matched type curve and the match point let one to estimate the future production rates in case the data match the empirical part of the type curve. If the data matches the analytical part of the type curve it results in estimating the reservoir's characteristics.

Among the literature, most of the type curves available are for oil wells and are not directly applicable to gas wells. Intelligent Production Data Analysis provides an environment to do type curve matching for both oil and gas wells.

3.3 History Matching and Reservoir Simulation

History matching is adjusting a model of a reservoir so it closely reproduces the past behavior of that reservoir. Production rates and pressure data are matched as closely as possible. The accuracy of the history matching depends on the quality of the reservoir model and the quality and quantity of pressure and production data. Once a model has been history matched, it can be used to simulate future reservoir behavior with a higher degree of confidence. This confidence can be improved by adjusting the model's constraints to the known geological properties of the reservoir.

3.4 Fuzzy Pattern Recognition

This Process uses Fuzzy Pattern Recognition (*FPR*). This routine integrates the information obtained from all wells in order to track Field-Wide behavior. The characterization of reservoir allows for the identification of sweet spots and to forecast remaining reserves.

FPR uses intelligent systems to deduce patterns when the available data apparently does not show any relationship between input and output. This capability distinguishes IPDA from conventional Production Data Analysis.

4. Methodology

Different steps are taking place in order to achieve the project objectives. Main steps are illustrated briefly in Fig. 4-1.

Fig. 4-1 Methodology Flow Chart

Detail of these steps will be discussed in the appropriate section.

4.1 Data Acquisition

Almost nineteen years of monthly production rate data is available for number of twenty wells in a mature Gas field. Importing these data into IPDA is done by using the data import section.

Reservoir characteristics such as porosity, pay thickness and initial water saturation are given in contour maps as shown below.

Fig 4-2. Thickness Contours

Fig 4-3 Porosity Contour

Fig 4-4 Water Saturation Map

Res

Status

ervior Simulation Numerical Simulatio Fuzzy Pattern Recognition Field-Wide Pattern Recognitio What-If Scenarios

Under Performer Wells

.

File Edit View License Manager Windows Help	
Import Data	🛃 FC - Data Importing Wizard
Decline Alalysis Decline Curve Analysis	Select Fie
Tune Curve Analusis	Ecoma Delimited C ToB Delimited

ion to

C Excell Sheet

Connection to

C Databas

Excel 8.0

Sheet 1

Access

Table 1 Cancel •

•

•

12/10/2007

2:14 PM

Production data is imported to the IPDA using the import data file interface.

An example of the production data for one well is presented in Fig 4-6.

Excell Files

atabi e File

Fig 4-6 - Example of Production Data for well 9

4.2 Decline Curve Analysis

The plot of Flow Rate vs. Time. is generated in this section. An autogenerated decline curve can be fitted to the data using the "Auto Decline" feature in the software. This fitted curve can be improved by changing the values of q_i , D_i and b. because of normally having anomalies and outliers in the production data adjusting the decline curve with eye is normally generating a better result than any least mean square error method.

Many equations might be used to model a Decline Curve, in IPDA three sets of equations which were described in the theoretical background section are supported. These three are Hyperbolic, Exponential, and Harmonic decline equations. The DCA used in this project are hyperbolic and harmonic decline curves with b values between 0 and 2. A sample decline curve is shown on fig 4-7.

Fig 4-7. Production Rate Decline Curve for well 9

In the decline curve section it's possible to get the cumulative data simultaneously in the same plot so the validity of the match can be verified based on the cumulative data.

Fig 4-8. Production rate and Cumulative vs time for well 15

In the DCA interface one can calculate the EUR for a specific number of years (50 years in this case) and an abandonment rate of 5 MCFD.

4.3 Type Curve Matching

Type Curve Matching, TCM, uses Cox approach, Cox Type curves are specifically designed for low permeability Gas reservoirs. In this part reservoir's parameters like EUR, permeability, drainage area and fracture half length are calculated on a per well basis. In order to calculate these values the reservoir's parameters should be imported to the program. This can be done using two different buttons in the Type curve Matching Interface as "Default All Wells" and "Specific Well Input". These dialogs have the same data but the first one assign the inputs to all the wells as default and the second is for a particular well. There was a problem in the program that once you set a special data if you open the default dialogue again it will assign the default value to that well and ignore the special value assigned previously.

The dialogue is illustrated in Fig 4-9.

1613297			
<u>Field Specific Data</u>		Well Specific Data	
Initial Pressure, Pi (psi)	4000	Porosity (%)	18
Reservior Temprature (F)	260	Pay thickness (ft)	17.5
Gas Specific Gravity	0.623	Gas Saturation (%)	79
Isotropicity (Kx/Ky)	1	Flowing Bottomhole Pressure pwf	40
Drainage Shape Factor (L/W)	1		
Incremen	t for Pressure	Related Calculation 400	
Save	ר	Close	

Fig 4-9. Special Well Input Dialogue

Software gets the *b* value for the type curves from the DCM and produce a set of type

curves for different values of $\frac{X_e}{X_f}$. Once a match is found the red curve should be set to the

particular match so the correct value of $\frac{X_e}{X_f}$ is calculated.

The EUR value calculated from DCM can be validated in the Type Curve Matching procedure. Once you save the type curve the EUR is calculated and can be found under the Type Curve Results tab.

A sample set of Type Curves are shown in Fig 4-10.

Fig 4-10. Type curves for well Number 13

4.4 History Matching

Under the Numerical Simulation tab a single well simulation model for each well can be performed. By History Matching (HM) the reservoir's characteristics are adjusted in such a way so the model has the same behavior as the Production Data History.

There might be several reservoirs set of parameters that will experience similar behavior. Therefore, a qualitative and quantitative comparison between HM, DCA and TCM results will lead to the best possible model.

Fig 4-11 . Algorithms followed for History Matching.

History matching process can be started using the values taken from the TCM. These values are changed until the simulation behavior is matching with the data. A sample simulation result is given in Fig 4-12.

Fig 4-12 .- History Match of Well number 19

4.5 DCA TCM and HM validation

DCA, TCM and HM are compared through a back and forth procedure. For this comparison the value for EUR is used to evaluate the consistency of these three methods.

4.6 Fuzzy Pattern Recognition

Results from FPR allow the identification of the sweet spots for drilling locations and recognition of under performer wells by tracking particular productivity indices.

Also other deliverables are available upon completion of the analysis. Some of them are:

- 1. Initial Gas in Place
- 2. Cumulative Production
- 3. Remaining Reserves
- 4. Permeability
- 5. Drainage Area
- 6. Fracture Half Length
- 7. Under-Performer Wells

4.7 CMG Modeling

4.7.1 Preliminary Field Model:

Using CMG, a reservoir simulator package, a preliminary field model is built. This approach is taken in order to perform a sensitivity analysis on the data to understand the effects that some reservoir characteristics may have on the behavior of the field. This study can be taken as a preliminary sensitivity analysis for future History Matching approach.

Building the Model:

The data and assumptions entered in the simulator are as follow:

Provided:

- Thickness Map: Iso-pach Map (Provided. See Figure)

- Porosity: Iso-Porosity Map (Provided. See Figure)
- Water Saturation Map (Provided. See Figure)
- Reservoir Pressure: 4000 psi
- Temperature: 260 °F

From History Matching (IPDA):

- Permeability. (See Table)

Assumed:

- Depth: 1000 ft
- Grid Top elevation: 500 ft
- Two-Phase Model (Gas Water). As History Matching in IPDA
- Grid System: 81x48x1. Cell size: 120x120 ft
- Kx=ky and kz=kx*0.1

Fig 4-13 Field Map

The following is showing a 3D view of the field, also showing thickness distribution:

Fig 4-14. 3D View of the Field with thickness distribution

The following Figure shows the Permeability values from History Matching performed in

IPDA, also its distribution along the field using Sequential Gaussian Simulation.

The following Figure shows the Porosity Map input using the provided Iso-Porosity:

The following Figure shows the Water Saturation Map input using the provided Iso-

Saturation:

4.7.2 Sensitivity Analysis:

Values for permeability, porosity, and Thickness were changed in order to perform the analysis.

In the following tables, Permeability values are from History Matching performed in IPDA, porosity and thicknesses values are from the provided Iso-Porosity and Iso-Pach respectively since those values were not changed during the History Matching stage.

In order to change the parameters, they were multiplied by a factor as is shown in Table 4-1.

Permeability	Porosity	Thickness
0.5 * k from HM		
k from HM	Ico Donosity	Ico Doob
1.5 * k from HM	Iso-Porosity	Iso-Pach
2.5 * k from HM		

Permeability	Porosity	Thickness
	0.5 x Iso-Porosity	
la History Matshire	Iso-Porosity	Ico Dool
K History Matching	0.5 x Iso-Porosity	Iso-Pach
	0.5 x Iso-Porosity	

Permeability	Porosity	Thickness
		0.5 * Iso-Pach
k History Matching	Las Dagasity	0.7 * Iso-Pach
	Iso-Porosity	Iso-Pach
		1.5 * Iso-Pach

Table 4-1

5. Results and Discussion

5.1 Conventional Data Analysis Techniques and Numerical Simulation

In the Appendix A all the results for Decline Curve Analysis, Type Curve Method and Numerical Simulation are summarized. These results have been validated based on the EUR calculation as mentioned in the methodology. The outcome of this validation is illustrated in Table 5-1.and Fig 5-1.

Well ID	Well Number	EUR DC	EUR TC	EUR FP
1612999	1	4053.14	4035.21	3886.3
1613179	2	4636.5	4596.838	4404.4
1613184	3	2224.59	2231.35	1833
1613188	4	3860.56	3846.77	3493.6
1613199	5	3089.55	3088.883	2601.8
1613203	6	4417.72	4399.387	4040.4
1613211	7	1663.09	1701.157	1677.7
1613212	8	2559.78	2554.141	2289.8
1613222	9	5188.2	5191.85	4985.25
1613231	10	1738.46	1775.627	1531.3
1613242	11	1642.18	1636.039	1521.3
1613259	12	2402.78	2406.843	2146.8
1613297	13	4264.17	4271.75	3779.3
1613303	14	3821.66	3805.132	3549.4
1613307	15	5382.98	5355.697	5009.2
1613329	16	2677.03	2662.646	2222
1613335	17	5886.07	5843.667	5140.5
1613349	18	2689.05	2669.127	2320
1613351	19	2053.14	2043.736	1708.4
1613353	20	4479.29	4463.137	4349

Table 5-1 - Verification of EUR values

Fig 5-1. EUR Value Validation

5.2 Fuzzy Patter Recognition Results

Using the deliverables such as Remaining Reserves, EUR, Permeability and Drainage area from the analysis, some recommendations should be made. These recommendations will be based on the comparison of the trends among these Productivity Indices (PI) mentioned above.

Based on each PI the whole reservoir is partitioned so each part has a ranking which is called the Quality Index. These QI let us to evaluate the reservoir's area based on that particular PI.

Results for each indicator have been shown and analyzed in this chapter. These trends help us to find sweet spots along the field. Also they play a role on the identification of underperformer wells and potential drilling locations in order to increase the productivity and efficiency of the reservoir by adjusting some variables.

5.1 Results for Initial Gas in Place

Fig. shows the reservoir's partitioning based in the Initial Gas In Place (IGIP). Also a surface map illustrates the distribution of the IGIP along the reservoir. This surface map allows the identification of the higher quality indices (QI) zones.

Fig 5-2 – Initial Gas in Place, Reservoir Partitioning

Fig 5-3. Initial Gas In_Place- Surface Map

Fluid Type		R	Results of Partitioning				
tition Ranking	Well Inf	formation	Partitions D	etails	Drill Dov	wn Partitions	Add New Well
urrent Zone : Entire	Reservoir					×	
Partition Type	BBQI		IGIP (MCF)(i)			
r aradon 13pc	·····q.	Avg. Value	# Wells	% ₩ells			
High-High	1	0	0	0			
High-Mid	2	34,017,742.250	4	20			
High-Low & Mid-Mid	3	18,101,094.750	4	20			
Mid-Low	4	6,515,168.100	10	50			
Low-Low	5	3,025,710.000	2	10			
Total Wells			20	100			
						[
10 000							

Fig 5-3. Initial Gas In_Place- Data

5.2 Results for Remaining Reserves

Fig. shows the reservoir's partitioning based in the Remaining Reserve. Also a surface map illustrates the distribution of the Remaining Reserve along the reservoir. This surface map allows the identification of the higher quality indices (QI) zones.

Field-Wide Fuzzy Pattern Recog	nition				
	Fluid Type	Reservoir Classifical	tion	Results of Partitie	oning
No of Selected Well : 20				Gas : Remain reserv	re as of 10/1/2005 (MCP)
* 218 * * * *	0 0 0		•	U	M. (1)
	9470	•			0 %82*
Closer Line Days Closer Line Lat Lee % [27 Let Up % [57 Ling Line % [14 Ling Up % [57 PSC_Classify_RP		•		•	•

Fig. 5-5 – Remaining Reserves – Reservoir Partitioning

Fig. 5-6 Remaining Reserves- Surface Map

	Fluid	Type				Reserv	oir Class	ification			Result	s of Partitioning
Partition Ra	nking	[W	/ell Info	rmation	Ì	Partit	ions Det	ails	Y	Drill Down Part	titions	Add New Wells
Current Zone : Entire	Reservoir											
Partition Type	RRQI	ain reserve as of	10/1/200	D5 (MCI	Arra Malara	K-HM(G)					<u>^</u>
High-High	1	Avq. value	weils	6 Well	Avq. value	wein	6 Well					
High-Mid	2	29 188 913 667	6	30	1 558	6	30					
High-Low & Mid-Mid	3	6 549 757 000	2	10	1.600	2	10					
Mid-Low	4	3 702 263 125	8	40	1 444	8	40					
Low-Low	5	3,558,233,250	4	20	1.575	4	20					
Total Wells			20	100		20	100					
												~
1												>

Fig. 5-7 Remaining Reserves Attribute Data

While Remaining Reserve was used as an output in FPR, the same pattern with the permeability was tried to found which is shown in Fig. . these two PI's Patterns do not match each other very well.

5.3 Results for Permeability

Fig. shows the reservoir's partitioning based on the Permeability. Also a surface map illustrates the distribution of the Permeability along the reservoir. This surface map allows the identification of the higher quality indices (QI) zones.

Fig.5-8 Permeability – Reservoir Partitioning

Fig. 5-9 Permeability – Surface Map

Observing above graphs we can see that the low permeability areas which have a good reserve will e good selections for our stimulation candidates among the underperformer wells. This problem will be addressed in the under performer wells' section.

2	Fluid Ty	pe			Reserve	oir Class	ification			Results of	Partitioning
Partition Rank	king	Well In	Well Information		Partition	is Details	T	Dr	ill Down Partitions	Add	New Wells
rrent Zone : Entire	Reservoir										
Partition Type	RRQI	K-Hh	(6)	W BAT-R	A	K-TC(6)	to take the	_		2	
Histolist	1	Avg. Value	+ wee	A West	Avg. value	+ west	A WENT				
MishMid	2	3 350		10	E ARE	2	10				
Lab I and I Mid Mid	2	1.600	11	EE.	AEAC		10				
genuties with this	1	1.402			4 346		50				
HIGEOW		1.3/1		30	#.3/1	-	00				
Low-Low	3	0	9	0	0	Ŷ	ų				
Total Wells			20	100		20	100				

Fig. 5-10 Permeability, Attribute's data

5.4 Results for Drainage Area

Fig. shows the reservoir's partitioning based on the Drainage Area. Also a surface map illustrates the distribution of the Drainage Area along the reservoir. This surface map allows the identification of the higher quality indices (QI) zones.

Fig. 5-11 Drainage Area , Reservoir Partitioning

Fig. 5-12 Drainage Area – Surface Map

Flui	d Type		Ι	Reservo	ir Classification		Results of Partitioning			
Partition Ranking		Well Inform	ation	Partiti	ons Details	Drill D	own Partitions	Add New Wells		
Current Zone : Entire	Reservoir									
Partition Type	BBOI	A (acr	A (acre)-HM(G) K-HM(G)					-		
i unuon i jpu	Turun	Avg. Value	# Wells	% Wells	Avg. Value	# Wells	% Wells			
High-High	1	600.000	1	5	3,000	1	5			
High-Mid	2	355.556	9	45	1,444	9	45			
High-Low & Mid-Mid	3	295.000	6	30	1.442	6	30			
Mid-Low	4	273.750	4	20	1.438	4	20			
Low-Low	5	0	0	0	0	0	0			
Total Wells			20	100		20	100			
17.75			-	1100.1						
						1				
									*	
-									5	
A									100	

Fig. 5-13 Drainage Area – Attribute's Data

5.5 Results for the Best 3 Months Cumulative Production

Fig. shows the reservoir's partitioning based on the best three months of cumulative production. Also a surface map illustrates the distribution of this PI along the reservoir. This surface map allows the identification of the higher quality indices (QI) zones.

Fluid Type Reservoir Classification Results of Partitioning No of Selected Weil 20 Gas i Best 3 Headha GDF Gas i Best 3 Headha GDF	Field-Wide Fuzzy Pattern Recognition				(
	Fluid Type	Reservoir Clas	sification	Results of Partitionin	ng
	No of Selected Well : 20			Gas : D	est 3 Months CUM
	2 21e		•		
2111 0 0 Current in finite 0 0 Upper inn 1 1100 Current in finite 0 0					
C 3420 © Upper Une Page (Linew Une 2	2 101	0 0			۰
Le Low N [211] Let UN N (415) Leg Low N [211] Leg UN N [415]	C: >> © Upper time Super C: Lower time	* * ** * **		•	41302

Fig. 5-14 Best Three Months Cum Prod.

Fig. 5-15 Best Three Months Cum Prod. Surface Map

5.6 Results for the first one year Cumulative Production

Fig. 5-15 shows the reservoir's partitioning based on the first one year cumulative production. Also a surface map illustrates the distribution of this PI along the reservoir. This surface map allows the identification of the higher quality indices (QI) zones.

Field-Wide Fuzzy Pattern Recogn	ition			
Flui	d Type	Reservoi	r Classification	Results of Partitioning
No of Selected Well : 20				Gas : First 1 Year CUM
215 • • •		4		
22.331		0 0		•
C Upper Line Sheet	94399			44.302
Lat Low % [16.4] Lat Up % [66.23 Lag Low % [16.0] Lag Up % [66.24	* ** * **			
PSC Classify RP	5			

Fig.5-16 First one year cumulative production

Fig.5-17 First one year cumulative production, Surface Map

	Fluid Ty	pe		1:	Reserve	oir Class	ification		E.	Re	sults of Partitioning
Partition Rank	ding	Well In	formatio	0	Partition	is Details	r	Drill Down	Partition	15	Add New Wells
rrent Zone : Entire	Reservoir										
Partition Type	RRQI	Best 3 Mont	h: CUM(G)	3	First 3 Mont	hs CUM(G)		First 1 Ye	ar CUM(G)		^
		Avg. Value	# Wells	X Wells	Avg. Value	II Wells	2 Wells	Avg. Value	# Wells	2 Wells	
High-High	1	261,819.000	1	5	191,956.000	1	5	756,534.000	1	5	
High-Mid	2	201.338.286	7	35	147,285.143	7	35	472,511.000	7	35	
High-Low & Mid-Mid	3	172,142,857	7	35	114,944.571	7	35	422,054,429	7	35	
MidLow	4	121,295,000	5	25	93,224,800	5	25	292,331,600	5	25	
Low-Low	5	0	0	0	0	0	0	0	0	0	
Total Wels			20	100		20	100		20	100	
											× .
										3	

Fig. 5-18 First one year cumulative production Attribute's Data

5.7 Results for EUR

Fig. 5-18 shows the reservoir's partitioning based on the EUR calculated with Type Curves. Also a surface map illustrates the distribution of this PI along the reservoir. This surface map allows the identification of the higher quality indices (QI) zones.

Fig.5-19. EUR reservoir Partitioning

Fig. 5-20 EUR Surface Map
	Fluid T	Type		L		Reserv	oir Class	ification			Re	sults o	f Partitioning
Partition Ra	nking	1 V	/ell Info	rmation	T I	Partit	ions Det	ails	Dril	Down	Partitions		Add New Welk
Current Zone : Entire	leservoir												
Partition Type	RROI	First 3 Month	s CUM(3)	First 6 Month	s CUM(G)	First 9 Month	s CUM(G)	EUR (M	CF)-TC	G) ^
Mabiliah	1	101 055 000	went	+ wen	201 307 000	wen	s wen	AVQ. Value	wen	+ wen	5 355 697 000	wen	5 Well
blink Mid	2	155 170 500		20	297 692 167	6	20	406 759 000	6	30	4 692 034 922		20
Finger 9 Middled	2	100,120,000	0	20	207,052,107	6	20	206 112 167	6	20	3 230 991 167	6	20
sur-Low & Mid-Mid		100,120,033	0	30	207,424,500	0	30	200,11310/		30	3.2.30,331.167		20
MIG-LOW	4	103,135,429	(35	130/343/821	-	35	271,168.429	1	35	2,312,137,000	1	30
Low-Low	5	U	0	0	0	0	U	0	0	0	0	0	0
Total Wells			20	100		20	100		20	100		20	100

Fig. 5-21 EUR Attribute's Data

In this Fuzzy Pattern Analysis taking EUR as output and First 3, 6 and 9 months

production as an attributes a consistent pattern for all of them can be seen.

5.8 Recoverable Reserves for the asset

Assuming a Recovery Factor of 68% and using the Remaining Reserves calculated in the Fuzzy Pattern Recognition Section, the recoverable reserves on a per well basis is shown in Table. 5-2.

Well Number	Well ID	Remaining Reserves MCF	Recoverable reserves BCF
1	1612999	41910723	28.50
2	1613179	4092143	2.78
3	1613184	77918770	52.98
4	1613188	4286898	2.91
5	1613199	8227316	5.59
6	1613203	3286166	2.24
7	1613211	193120	0.13
8	1613212	2949778	2.01
9	1613222	9957949	6.77
10	1613231	1034749	0.70
11	1613242	734160	0.50
12	1613259	8838468	6.01
13	1613297	33951307	23.09
14	1613303	3507023	2.39
15	1613307	3141565	2.14
16	1613329	1853268	1.26
17	1613335	10540251	7.17
18	1613349	5022005	3.42
19	1613351	6322911	4.30
20	1613353	4315464	2.94

Table 5-2 Recoverable Reserve

5.8 Under Performer wells

Using the under performer well tab in the IPDA a list of under performing wells appear in 3 different tables. Two criteria is applied to find the underperforming wells the first one is the first three month cumulative production and the second is the first three years cumulative production. Based on these two and the definition in the software number of wells will be subject to performing less than expected. These wells based on their location will be the best candidates to do workover and stimulation processes.

Ranked	d Underpe	erformer Wells	Det	ails of Ran	king Process		Fuz	zy Sets
	Level O	ne	1	Level T	wo		Level 1	and 2
Rank	ID	Well Name	Bank	ID	Well Name	Bank	ID	Well Name
1	3	1613184	1	3	1613184	1	3	1613184
2	12	1613259	2	20	1613353	2	20	1613353
3	7	1613211	3	10	1613231	3	12	1613259
4	11	1613242	4	1	1612999	4	7	1613211
			5	14	1613303	5	11	1613242
			6	16	1613329	6	10	1613231
						7	1	1612999
						8	14	1613303
						9	16	1613329
Tect of Ed	ach PI on R	anking						
Fir	st 3 Month		Forcas	t EUR -30 (

Fig. 5-22. List of Underperformer wells

Fig.5-23 . Under Performer Wells

Based on where the well is and how the permeability and remaining reserve are at that part a remedial process is chosen. For instance when the permeability is relatively low but the reserve is good, there is a good spot for stimulation process. These decisions are illustrated in Table.

Under Performer Wells	K Permeability	Remaining Reserves	Remedial Method
1	Low	High Mid	Stimulation
20	High Mid	Low Mid	Work Over
12	High Mid	High Mid	Stimulation
3	High Mid	High Mid	Stimulation
7	Mid Low	Low Mid	Work Over
11	Mid Low	Mid Low	Stimulation
10	High Mid	Low	Work Over
14	High Mid	Low Mid	Work Over
16	High Mid	Low	Work Over

Table 5-3. Underperformer well's remedial decision

Well number 1 is in a Low permeability but is having a mid-high reserve. In this case stimulation is chosen to overcome the low permeability of the reservoir.

Well number 20 is located in a mid high permeability but it doesn't show a very good reserve. The investment for stimulation doesn't seem approachable instead work over remedial solution is proposed.

Well number 3 and 12 were selected for stimulation based on having a good reserve and Mid-High permeability.

Well number 7 and 10 were selected for work over based on having a Low and Mid-Low reserve.

5.9 Recommendation for infill drilling

Infill drilling recommendations are made based on the fuzzy pattern of the permeability and the Remaining Reserve in the reservoir. These two parameters provide the storage and conductivity (to flow) at that specific spot.

Three new wells are proposed to be drilled. These wells are allocated in upper part of the map where most of the reserves are located.

The well's allocation and economical analysis have been performed in the What-If Scenario tab in IPDA. Under this tab by selecting a new well and entering appropriate economical parameters the Net Present Value (NPV) for the new well is calculated. The more NPV, the better the well's influence on the package.

These three wells' locations and economical analysis are shown in figures in the next three pages.

Fig.5-24 . Cesarito well position

Fig 5.25 Economic Analysis of Cesarito well

Fig 5-26 Yasita well location

Fig 5-27 Economic Analysis of Camilito well

Fig 5-28 Camilito well location

Fig 5-29 Economic Analysis of Yasita well

5.10. Economical Analysis

The Forecast Incremental Production is calculated in the Fuzzy Pattern Recognition Section Forecast Tab. To get the yearly cumulative production these incremental values were calculated for each year. Yearly cumulative production will be the difference of each pair of consecutive values.

Economical Analysis at the discount rate of 8% was performed. Value of the asset is first obtained without any investment and compared with the scenario including the three new wells, Cesarito, Camilito and Yasita, and the remedial operations which are five stimulations and four work overs. The cost of each of these operations is included in the investment.

Drilling a New Well	\$400,000.00
Stimulation of a Well	\$125,000.00
Work Over of a Well	\$25,000.00
	

Overall Value of the Asset Before Investment	\$20,768,811.00
Overall Value of the Asset After Investment	\$48,381,470.00.
Discount rate of Return	908.20%

Table 5-4 Operation's Cost

Table 5-5 Analysis Results

All well's yearly production are shown in Table 5-6 the Net Cash Flow analysis is done based on a \$1,925,000 investment and it is compared to a Net Cash Flow Analysis of the asset without any investment.

The increment of the Value of the asset can justify the proposed investment. The Net Cash Flow profile and Net Present Value Profile are shown in Figures. 5-29 and 5-30.

	Well Name	Latitude	Longitude	DOFP	DOLP	Forecast Incr -1 (MCF)	Forecast Incr -2 (MCF)	Forecast Incr -3 (MCF)	Forecast Incr -4 (MCF)	Forecast Incr -5 (MCF)
1	1612999	32.149108	-94.343847	4/1/1986	10/1/2005	85012.05	166628.2	245434.25	321311.3	394742.2
2	1613179	32.110235	-94.304697	2/1/1989	10/1/2005	78121	152128	222592	289463	353229
3	1613184	32.172833	-94.302081	4/1/1989	10/1/2005	77488	149758.9	218053.9	282736.95	344540.3
4	1613188	32.168929	-94.338448	6/1/1989	10/1/2005	60545	118055	172972	225247	275255
5	1613199	32.178007	-94.305637	7/1/1989	10/1/2005	52500	102908	151540	198294	243445
6	1613203	32.16428	-94.381007	3/1/1989	10/1/2005	63768	123978	181143	235259	286752
7	1613211	32.153669	-94.388843	12/1/1989	10/1/2005	16676.15	31779.1	39616	50537	60558
8	1613212	32.160925	-94.386909	6/1/1989	10/1/2005	39654	77419	113572	148072	181155
9	1613222	32.176326	-94.323418	6/1/1989	10/1/2005	84698	165591	243240	317528	388936
10	1613231	32.105816	-94.371123	8/1/1989	4/1/2003	43072.25	83228.55	120922.75	156430.35	190073.25
11	1613242	32.142295	-94.398685	5/1/1989	9/1/2005	30155.65	58542.3	85418.05	110797.4	134890.6
12	1613259	32.177616	-94.31146	10/1/1989	10/1/2005	60862.3	119487.25	176221.4	230929.9	283915.8
13	1613297	32.195754	-94.302669	1/1/1990	10/1/2005	78454	154175	227597	298526	367345
14	1613303	32.158959	-94.394324	7/1/1989	10/1/2005	65121.05	126793.25	161322	209807	256076
15	1613307	32.184176	-94.353343	9/1/1989	10/1/2005	77566	150302	218907	283446	344489
16	1613329	32.113135	-94.36664	11/1/1989	10/1/2005	48818.65	94820.95	120360	156181	190210
17	1613335	32.184587	-94.368552	10/1/1989	10/1/2005	96313	188105	276043	360019	440602
18	1613349	32.100914	-94.376329	10/1/1989	10/1/2005	46667	91312	134235	175363	214956
19	1613351	32.102895	-94.366675	1/1/1990	10/1/2005	35583	69828	102941	134847	165728
20	1613353	32.192661	-94.377361	11/1/1989	10/1/2005	71490.9	136862.65	171624	220426	266110
21	Cesarito	32.18448	-94.36079	10/1/2005		795480.91	525717.28	392212.83	312463.14	259453.65
22	Camilito	32.18696	-94.33598	10/1/2005		719957.01	467226.22	347867.52	277838.89	231651.33
23	Yasita	32.16772	-94.36326	10/1/2005		721895.6	477085.57	355931.01	283558.6	235452.78

Table 5-6 Forecast Results after Remedial Operations

Year	Investment \$	Production Mcf	Revenue, \$	Op Cost, \$	Net Cash Flow	NPV (8%)
0	0.00				0.00	0.00
1		1,094,159.00	6,564,954.00	875,327.20	5,689,626.80	5,268,172.96
2		1,037,371.00	6,224,226.00	829,896.80	5,394,329.20	4,624,767.83
3		989,657.00	5,937,942.00	791,725.60	5,146,216.40	4,085,232.50
4		941,970.00	5,651,820.00	753,576.00	4,898,244.00	3,600,355.57
5		901,456.00	5,408,736.00	721,164.80	4,687,571.20	3,190,282.19
					Total NPV, \$	20,768,811.05

Table 5-7 Economical Results Analysis without Investment

Year	Investment \$	Production Mcf	Revenue, \$	Op Cost, \$	Net Cash Flow \$	NPV (8%) \$	NPV (20%) \$	NPV (50%) \$	NPV (100%) \$	NPV (200%) \$	NPV (DCFROR=908.2%) \$
0	1,925,000				-1,925,000	-1,925,000	-1,925,000	-1,925,000	-1,925,000	-1,925,000	-1,925,000
1		3,449,900	20,699,397	2,759,920	17,939,478	16,610,627	14,949,565	11,959,652	8,969,739	5,979,826	1,779,243
2		2,619,165	15,714,991	2,095,332	13,619,659	11,676,663	9,458,097	6,053,182	3,404,915	1,513,295	133,973
3		2,118,064	12,708,381	1,694,451	11,013,931	8,743,213	6,373,802	3,263,387	1,376,741	407,923	10,745
4		1,895,327	11,371,963	1,516,262	9,855,701	7,244,235	4,752,942	1,946,805	615,981	121,675	954
5		1,704,345	10,226,070	1,363,476	8,862,594	6,031,733	3,561,678	1,167,091	276,956	36,472	85
						48,381,470	37,171,084	22,465,116	12,719,332	6,134,192	0

Table 5-8 Economical Analysis Results with Investment

Fig. 5-30 Net Cash Flow Diagram

Fig. 5-31 NPV Profile

5.11. CMG Modeling Results

The model in CMG has been successfully built, also the sensitivity analysis. The results of this analysis are as follow; also the results were compared with the actual data.

Permeability Changes: As Permeability increases, Gas Rate Increases

Source: C.Y.C. Fleki Consulting Services, Inc.

As we went over all the wells the same trend was found, except for some well which show abnormal behaviors due to being close to the boundaries. The results for the other wells are shown in the Appendix B.

Porosity Changes: As Porosity increases, Gas Rate Increases

Source: C.Y.C. Fleki Consulting Services, Inc

As we went over all the wells the same trend was found, except for some well which show abnormal behaviors due to being close to the boundaries. The results for the other wells are shown in the Appendix B.

as the life of the well goes on the behavior become inversely proportional

As we went over all the wells the same trend was found, except for some well which show abnormal behaviors due to being close to the boundaries. The results for the other wells are shown in the Appendix B.

Source: C.Y.C. Fleki Consulting Services, Inc.

6. Conclusions and Recommendations

- The field has been studied and its recoverable reserve identified also in the performer wells bases.
- Several locations for potential infill drills have been evaluated based on the results of Fuzzy Pattern Recognition (FPR), Decline Curves (DC) and Type Curve (TC).
- 3. Nine underperformer wells have been identified and evaluated as candidates for work over or stimulation. These wells are 1, 20, 12, 3, 7, 11, 10, 14 and 16.
- 4. Five wells have been recommended for Stimulation, these are as follows: 1, 12, 3 and 11.
- 5. Wells 20, 7, 10, 14 and 16 are recommended for work over base on the fact they have high relative values of K and low relative values in the reserves.
- 6. The total investment is \$1,925,000.00 to drill 3 wells and perform 5 Stimulations and4 Work Over remedial operations on the existing wells.
- 7. Three new wells, Cesarito, Yasita and Camilito are recommended to be drilled based on the capacity of the location to deliver gas and the economics without interfering the estimated drainage area at the surroundings wells.
- An integrated complete analysis has been completed. As a result the overall value of the asset is \$ 48,381,470
- 9. Preliminary field model has been used as CMG software and a sensitivity analysis.
- 10. Total Production gas before the investment within the next 5 years is estimated as4,964,613 Mcf and after is 11,786,801 Mcf.

11. A Base Field Model has been built using CMG and a preliminary Sensitivity Analysis performed. The results from this study can be used for future evaluations of the reservoir including the History Matching of the whole field rather than on the per well basis. The real data was compared with the simulation outcome and they did not match. At this point no further analysis has been done.

7. References

- 1. Intelligent Solutions Production Data Analysis. (IPDA) Software Manual
- Jalali, Mohaghegh and Gaskari. <u>Identifying Infill Locations and Underperformer</u> <u>Wells in Mature Fields using Monthly Production Rate Data.</u> SPE paper 104554. 2006
- Gaskari, Mohaghegh, Jalali. <u>An Integrated Technique for Production Data Analysis</u> with <u>Application to Mature Fields</u>.SPE paper 100562. 2006.
- Mohaghegh, Gaskari, Jalali. <u>New Methods for Production Data Analysis to Identify</u> <u>New Opportunities in Mature Fields: Methodology and Application.</u> SPE paper 98010. 2005.
- 5. Schlumberger Oilfield Glossary.
 Available at:: <u>http://www.glossary.oilfield.slb.com/default.cfm</u>
- 6. Thompson R.S. Wright J.D. Oil Property Evaluation. 1984

Appendix A

Decline Curve Analysis

Type Curve Matching

Numerical Simulation Results:

	TABLES		
Pressure Table Use Correlations	Saturation Tabl	e Concentral	tion Table elations
Create Table	Create Table	Create	Table
Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F: Fracture Properties Fracture Half Length, ft: Fracture Width, in:	0.000001 49 1000 1.36 260 45 0.1	ſ	Reset Data
		ļ	Reset Data Save Input Data
Initial Conditions			
Number of Blocks:	20		
Porosity, %:[12.5		
Rock Permeability, md:	0.75		
Initial Reservoir Pressure, psia:	900		
Initial Gas Saturation, %:	82.5	t To anno bh a laibinl na	
Bottom Hole Pressure, psia:	40 an	vailable, it Can be cal ressure gradient and	culated internally using formation depth.
Well & Reservoir Size			
Well Radius, ft:	0.5		
Drainage Area, acres:	250	** User can either en	ter the drainage area and
External Radius, ft:	1861.83	he external radius wi calculated or enter th	II be automatically e external radius directly.
		1	Reset Data
			Save Input Data

Type Curve Analysis

Numerical Simulation Results

	TABLES		Well Name
Pressure Table Use Correlations Enter Manually Create Table Formation Properties Rock Compressibility, 1/psia Formation Thickness, ft Formation Depth, ft Rock Specific Gravity, frac Reservoir Temperature, °F	Saturation Table Use Correlations Enter Manually Create Table 0.000001 46 1000 1.36 260	Concentration Table Use Correlations C Enter Manually Create Table	1:1612999 2:1613179 3:1613184 4:1613188 5:1613199 6:1613203 7:1613211 8:1613212 9:1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613329 17:1613355 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft Fracture Width, in	: <u>30</u> : <u>0.1</u>		
		Reset Data Save Input Data	Monte Carlo Sim.

initial Conditions	
Number of Blocks: [20
Porosity, %:[14
Rock Permeability, md: [1.3
Initial Reservoir Pressure, psia: [1400
Initial Gas Saturation, %: [75
Bottom Hole Pressure, psia:	40
Well & Reservoir Size	
Well Radius, ft: 1	0.5
Well Radius, rt: [0.5 380

Decline Curve Analysis

Type Curve Matching:

Numerical Simulation Results

	TABLES	Ĩ	Well Name
Pressure Table Use Correlations Enter Manually Create Table Formation Properties Rock Compressibility, 1/psia Formation Thickness, ft Formation Depth, ft Rock Specific Gravity, frac Reservoir Temperature, °F	Saturation Table Use Correlations C Enter Manually Create Table	Concentration Table Use Correlations Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212 9 :1613222 10:1613231 11:1613242 12:1613259 13:161307 16:1613303 15:161335 18:1613349 19:1613351 20:1613353
- Fracture Properties Fracture Half Length, ft Fracture Width, in	: 61.697 : 0.1		
		Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

	-
Number of Blocks:	20
Porosity, %:	17.5
Rock Permeability, md:	1.4
Initial Reservoir Pressure, psia:	850
Initial Gas Saturation, %: [78
Bottom Hole Pressure, psia: [40
Vell & Reservoir Size	
Well Radius, ft: [0.5
Drainage Area, acres:	150
External Radius, ft:	1442.1

Decline Curve Analysis

Type Curve Matching

Numerical Simulation Results

3	TABLES	1	Well Name
Pressure Table Use Correlations Enter Manually Create Table Formation Properties Rock Compressibility, 1/psia Formation Thickness, ft	Saturation Table Use Correlations C Enter Manually Create Table	Concentration Table Use Correlations C Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212 9 :1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613307
Formation Depth, ft Rock Specific Gravity, frac Reservoir Temperature, °F - Fracture Properties Fracture Half Length, ft Fracture Width, in	1000 1.36 260 61.697		16:16:13329 17:1613335 18:1613349 19:1613351 20:1613353
		Reset Data Save Input Data	Monte Carlo Sim.

Initial Conditions	
Number of Blocks:	20
Porosity, %:	14
Rock Permeability, md:	1.5
Initial Reservoir Pressure, psia:	1300
Initial Gas Saturation, %:	83
Bottom Hole Pressure, psia:	40
Well & Reservoir Size	
Well Radius, ft:	0.5
Drainage Area, acres:	350

Decline Curve Analysis

Type Curves Matching

Numerical Simulation Results

8	TABLES		Well Name
Constan	Pressure Table Saturation Table Image: Correlations Image: Correlations Image: Correlations Image: Correlations	Concentration Table Use Correlations C Enter Manually	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :11613188
nitial Cond.	Create Table Create Table	Create Table	6 :1613203 7 :1613211 8 :1613212 9 :1613222 10:1613231
Rock/Fluid 1	Rock Compressibility, 1/psia: 0.000001 Formation Thickness, ft: 25 Formation Depth, ft: 1000 Rock Specific Gravity, frac: 1.36 Persenvoir Temperature, 25: 250		11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351
Fluid	Fracture Properties Fracture Half Length, ft: 30.753 Fracture Width, in: 0.1		20:1613353
Rock		Reset Data Save Input Data	Monte Carlo Sim.

Number of Blocks:	20
Porosity, %:	17.5
Rock Permeability, md: [1.5
Initial Reservoir Pressure, psia:	1400
Initial Gas Saturation, %: [79.8
Bottom Hole Pressure, psia:	40
Well & Reservoir Size	
Well Radius, ft: [0.5
Drainage Area, acres:	300
External Radius, ft:	2039.5

Decline Curve Analysis

Type Curve Matching

TABLES			Well Name
Pressure Table © Use Correlations ○ Enter Manually Create Table Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F:	Saturation Table Use Correlations C Enter Manually Create Table 0.000001 39 1000 1.36 260	Concentration Table Use Correlations C Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212 9 :1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft: Fracture Width, in:	68.458 0.1		
		Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

Number of Blocks:	20
Porosity, %:	15
Rock Permeability, md:	1.6
Initial Reservoir Pressure, psia:	1250
Initial Gas Saturation, %: [84.2
Bottom Hole Pressure, psia:	40
Well & Reservoir Size	
Well Radius, ft:	0.5
Drainage Area, acres:	350

<u>WELL 7</u>

Decline Curve Analysis

	TABLES		Well Name
Pressure Table Use Correlations CEnter Manually Create Table Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F:	Saturation Table Use Correlations Enter Manually Create Table 0.000001 30 1000 1.36 260	Concentration Table Use Correlations C Enter Manually Create Table	1:1612999 2:1613179 3:1613184 4:1613188 5:1613199 6:1613203 7:1613211 8:1613212 9:1613222 10:1613231 11:1613242 12:1613259 13:1613307 16:1613329 17:1613355 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft: Fracture Width, in:	167 0.1		
		Reset Data Save Input Data	Monte Carlo Sim, Start Simulation

Initial Conditions	
Number of Blocks:	20
Porosity, %:	18.5
Rock Permeability, md:	1.3
Initial Reservoir Pressure, psia:	1200
Initial Gas Saturation, %:	84
Bottom Hole Pressure, psia:	40
Well & Reservoir Size	
Well Radius, ft:	0.5
Drainage Area, acres:	165

Decline Curve Analysis

Number of Blocks:	20
Porosity, %:[20
Rock Permeability, md: [0.75
Initial Reservoir Pressure, psia:	1100
Initial Gas Saturation, %:	83,5
Bottom Hole Pressure, psia: [40
Well & Reservoir Size	0.5
Drainage Area acres:	190
Cranago Area, acros	

Decline Curve Analysis

	TABLES		Well Name
Pressure Table Use Correlations Enter Manually Create Table Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac:	Saturation Table Use Correlations Enter Manually Create Table 0.0000001 32 1000 1.35	Create Table	Viel (kille) 1:1612999 2:1613179 3:1613184 4:1613188 5:1613199 6:1613203 7:1613211 8:1613212 9:1613222 10:1613231 11:1613242 12:1613259 13:1613303 15:1613307 16:1613299 17:1613335 19:1613249
Reservoir Temperature, °F: Fracture Properties Fracture Half Length, ft: Fracture Width, in:	260 264.954 0.1		19:1613351 20:1613353
		Reset Data	Monte Carlo Sim.
		Save Input Data	Start Simulation

Number of Blocks:	20
Number of biocis;	20
Porosity, %:	10
Rock Permeability, md:	1,4
Initial Reservoir Pressure, psia:	1250
Initial Gas Saturation, %: [81
Bottom Hole Pressure, psia:	40
Vell & Reservoir Size	
Well Radius, ft:	0.5
Drainage Area, acres:	650

Decline Curve Analysis

Decline Curve Analysis

TABLES			Well Name
Pressure Table Use Correlations Enter Manually Create Table	Saturation Table Use Correlations Enter Manually Create Table	Concentration Table Use Correlations Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212
Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F:	0.000001 21 1000 1.36 260		9:1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft: Fracture Width, in:	0.1		
		Reset Data Save Input Data	Monte Carlo Sim.

Number of Blocks:	20
Parosity, %:[16.5
Rock Permeability, md: [1.8
Initial Reservoir Pressure, psia: [1250
Initial Gas Saturation, %: [84
Bottom Hole Pressure, psia:	40
Vell & Reservoir Size Well Radius, ft: (0.5
Drainage Area, acres:	280

	TABLES		Well Name
Pressure Table Use Correlations C Enter Manually Create Table	Saturation Table Use Correlations Enter Manually Create Table	Concentration Table Use Correlations C Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212 9 :1613222
Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F:	0.000001 27.5 1000 1.36 260		10:1613231 11:1613242 12:1613259 13:1613297 14:1613307 16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft: Fracture Width, in:	58.549 0.1		
		Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

Initial Conditions	
Number of Blocks:	20
Porosity, %:	15
Rock Permeability, md: [1.2
Initial Reservoir Pressure, psia: [1300
Initial Gas Saturation, %: [79.5
Bottom Hole Pressure, psia: [40
Well & Reservoir Size	10
Well Radius, ft: [0.5
Drainage Area, acres:	250

Decline Curve Analysis

	Well Name		
Pressure Table Use Correlations Enter Manually Create Table Formation Properties Rock Compressibility, 1/psia Formation Thickness, ft	Saturation Table Use Correlations C Enter Manually Create Table	Concentration Table Use Correlations Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212 9 :1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613307
Formation Depth, ft Rock Specific Gravity, frac Reservoir Temperature, °F Fracture Properties	: 1000 : 1.36 : 260		16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
Fracture Half Length, ft Fracture Width, in	: 88.405 ; 0.1		
		Reset Data	Monte Carlo Sim.
		Save Input Data	3 Start Simulation

Initial Conditions	
Number of Blocks:	20
Porosity, %:	18
Rock Permeability, md:	3
Initial Reservoir Pressure, psia:	1150
Initial Gas Saturation, %:	79
Bottom Hole Pressure, psia:	40
Well & Reservoir Size Well Radius, ft:	0.5
Drainage Area, acres:	600
in a second second second	

<u>WELL 14</u>

Decline Curve Analysis

	TABLES		Well Name
Pressure Table Use Correlations Enter Manually Create Table	Saturation Table G Use Correlations C Enter Manually Create Table	Concentration Table Use Correlations Enter Manually Create Table	1:1612999 2:1613179 3:1613184 4:1613188 5:1613199 6:1613203 7:1613211 8:1613212
Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac Reservoir Temperature, %	0.000001 31 1000 1.36 260		9:1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
-Fracture Properties Fracture Half Length, ft: Fracture Width, in:	127.815 0.1		
		Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

Initial Conditions	
Number of Blocks:	20
Porosity, %:[18.5
Rock Permeability, md: [1.9
Initial Reservoir Pressure, psia: [1000
Initial Gas Saturation, %: [83.2
Bottom Hole Pressure, psia: [40
Well & Reservoir Size	
Well Radius, ft:	0.5
Drainage Area, acres:	400

Decline Curve Analysis

	TABLES		Well Name
Pressure Table Use Correlations C Enter Manually Create Table	Saturation Table Use Correlations C Enter Manually Create Table	Concentration Table Use Correlations C Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212 9 :1613222 10:1613231
Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F:	0.000001 40 1000 1.36 260		11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft: Fracture Width, in:	81.573 0.1		
		Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

Initial Conditions	
Number of Blocks:	20
Porosity, %:[14.5
Rock Permeability, md: [1.8
Initial Reservoir Pressure, psia: [1200
Initial Gas Saturation, %:	85
Bottom Hole Pressure, psia: [40
Well & Reservoir Size	
Well Radius, ft: [0.5
Drainage Area, acres:	420

Decline Curve Analysis

	TABLES		Well Name
Pressure Table Use Correlations C Enter Manually Create Table Formation Properties	Saturation Table Use Correlations Enter Manually Create Table	Concentration Table Use Correlations Enter Manually Create Table	1:1612999 2:1613179 3:1613184 4:1613188 5:1613199 6:1613203 7:1613211 8:1613212 9:1613212 9:1613222 10:1613231 11:1613242
Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F:	0.000001 25 1000 1.36 260		12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft: Fracture Width, in:	93.828 0.1		
		Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

Initial Conditions	
Number of Blocks:	20
Porosity, %:	19
Rock Permeability, md:	2.1
Initial Reservoir Pressure, psia:	1150
Initial Gas Saturation, %:	83
Bottom Hole Pressure, psia:	40
Well & Reservoir Size	
Well Radius, ft:	0.5
Drainage Area, acres:	250
External Radius, ft:	1861.83

Decline Curve Analysis

<u></u>	TABLES		Well Name
Pressure Table Use Correlations Enter Manually Create Table	Saturation Table Use Correlations Enter Manually Create Table	Concentration Table Use Correlations C Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212
Formation Properties Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac: Reservoir Temperature, °F:	0.000001 46 1000 1.36 260		9:1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351 20:1613353
Fracture Properties Fracture Half Length, ft: Fracture Width, in:	104.515 0.1		
		Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

Number of Dischar	20
Number or blocks:	20
Porosity, %:	12
Rock Permeability, md:	1.4
Initial Reservoir Pressure, psia:	1200
Initial Gas Saturation, %:	84.5
Bottom Hole Pressure, psia:	40
Vell & Reservoir Size	
Well Radius, ft:	0.5
	500
Drainage Area, acres:	

	TABLES		Well Name
Pressure Table Use Correlations Enter Manually Create Table	Saturation Table Use Correlations Enter Manually Create Table	© Use Correlations © Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212
Formation Properties — Rock Compressibility, 1/psia: Formation Thickness, ft: Formation Depth, ft: Rock Specific Gravity, frac:	0.000001 17 1000		9:1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335
Reservoir Temperature, °F:	260		19:1613351 20:1613353
Fracture Properties			
Fracture Half Length, ft: Fracture Width, in:	99.063 0.1		
		Reset Data	Monte Carlo Sim.
		Save Input Data	Start Simulation

Number of Blocks:	20
Porosity, %:[16.5
Rock Permeability, md: [1.8
Initial Reservoir Pressure, psia:	1100
Initial Gas Saturation, %: [83.5
Bottom Hole Pressure, psia:	40
Vell & Reservoir Size Well Radius, ft: [0.5
Drainage Area, acres:	500

WELL 19

Decline Curve Analysis

Type Curve Matching

Numerical Simulation Results

	TABLES		Well Name
Pressure Table Use Correlations Enter Manually Create Table Formation Properties Rock Compressibility, 1/psia Formation Thickness, ft Formation Depth, ft Rock Specific Gravity, frac Reservoir Temperature, °F	Saturation Table Use Correlations Enter Manually Create Table 0.0000001 22 1000 1.36 260	Concentration Table Use Correlations C Enter Manually Create Table	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613199 6 :1613203 7 :1613211 8 :1613212 9 :1613222 10:1613231 11:1613242 12:1613259 13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351
Fracture Properties Fracture Half Length, ft Fracture Width, in	: <u>55.26</u> : <u>0.1</u>	Reset Data Save Input Data	Monte Carlo Sim.

initial conditions	-
Number of Blocks:	20
Porosity, %:[18.5
Rock Permeability, md: [1.0
Initial Reservoir Pressure, psia: [1080
Initial Gas Saturation, %: [82.5
Bottom Hole Pressure, psia: [40
Well & Reservoir Size	
Well Radius, ft: [0.5
Drainage Area, acres:	250

WELL 20

Decline Curve Analysis

Type Curve Matching

Numerical Simulation Results

<u>ل</u>	TABLES	Well Name
Constan	Pressure Table Saturation Table Concentration Table Image: Use Correlations Image: Use Correlations Image: Use Correlations Image: Denter Manually Image: Use Correlations Image: Use Correlations Image: Denter Manually Image: Use Correlations Image: Use Correlations	1 :1612999 2 :1613179 3 :1613184 4 :1613188 5 :1613189
tial Cond.	Create Table Create Table Create Table	6 :1613203 7 :1613211 8 :1613212 9 :1613222 10 :1613231
Ini	Formation Properties	11:1613242 12:1613259
Rock/Fluid	Rock Compressibility, 1/psia: 0.000001 Formation Thickness, ft: 47 Formation Depth, ft: 1000 Rock Specific Gravity, frac: 1.36 Decenvoir Temperature 95:	13:1613297 14:1613303 15:1613307 16:1613329 17:1613335 18:1613349 19:1613351
Fluid	Fracture Properties Fracture Half Length, ft: 20.659 Fracture Width, in: 0.1	20:1613353
Rock	Reset Data Save Input Data	Monte Carlo Sim. Start Simulation

Number of Blocks:	20
Porosity, %:[11.7
Rock Permeability, md:	1.5
Initial Reservoir Pressure, psia:	800
Initial Gas Saturation, %:	83
Bottom Hole Pressure, psia:	40
Vell & Reservoir Size	
Well Radius, ft:	0.5
	200
Drainage Area, acres:	

Appendix **B**

Sensitivity Analysis Permeability Results

Source: C.Y.C. Field Consulting Services, Inc

Sensitivity Analysis, Permeability

 $Source: C.Y.C. \ Field \ Consulting \ Services \ , \ Inc$

Sensitivity Analysis, Permeability Well 5

Sensitivity Analysis, Permeability Well 3

Sensitivity Analysis, Permeability Well 2

Sensitivity Analysis, Permeability Well 16

Sensitivity Analysis, Permeability

Sensitivity Analysis, Permeability Well 12

Sensitivity Analysis, Permeability Well 1

Source: C.Y.C. Fleki Consulting Services, Inc.

Sensitivity Analysis Porosity Results

Source: C.Y.C. Fleki Consulting Services, Inc

Source: C.Y.C. Fleki Consulting Services, Inc.

Source: C.Y.C. Field Consulting Services, Inc.

Source: C.Y.C. Field Consulting Services, Inc.

Source: C.Y.C. Fleki Consulting Services, Inc

Source: C.Y.C. Fleki Consulting Services, Inc.

Source: C.Y.C. Fleki Consulting Services, Inc.

Source: C.Y.C. Fleki Consulting Services, Inc

Source: C.Y.C. Field Consulting Services, Inc.

Sensitivity Analysis Thickness Results

Source: C.Y.C. Field Consulting Services, Inc

Source: C.Y.C. Field Consulting Services, Inc

Source: C.Y.C. Field Consulting Services, Inc

Source: C.Y.C. Fleki Consulting Services, Inc

Sensitivity Analysis, Thickness Well 14

Sensitivity Analysis, Thickness Well 16

Source: C.Y.C. Field Consulting Services, Inc

Source: C.Y.C. Field Consulting Services, Inc.

Source: C.Y.C. Fleki Consulting Services, Inc

1**46**