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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

 A hot mix asphalt mixture is a composite of aggregate material, asphalt binder, and air.  

The performance of a bituminous pavement is directly related to the proportions of each of these 

materials.  Determining the proper proportions of each material allows for a better performing 

pavement product.  The various mix design methods, such as Marshall and SuperPave, were 

developed to establish the proper proportions of binder, aggregates and air voids.  However, 

other than the control points used to restrict the gradation of aggregate blends, the mix design 

methods do not allow the designer to analytically evaluate the effects of changes in gradations on 

mix properties.  

 The Bailey Method was developed by Robert Bailey, a retired materials engineer for the 

Illinois Department of Transportation.  The method develops a strategy to create a strong 

aggregate skeleton for rut resistance, durability, and adequate voids in the mineral aggregate.  A 

strong aggregate structure is important because the aggregate supports most of the compressive 

forces.  The Bailey Method is based on how the coarse and fine aggregates pack together to form 

a strong aggregate skeleton. 

 Originally the main tool for engineers to increase voids in the mineral aggregate was to 

use the 0.45-power grading chart for aggregates.  The voids in the mineral aggregate could be 

increased by adjusting the gradation farther away from the maximum density line.  There were 

no strict guidelines on how gradation changes would alter mixture properties.  The Bailey 

Method was developed to provide a guideline (Vavrik, et. al., 2002). 
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1.2 PROBLEM STATEMENT 

 The Bailey Method for predicting voids in the mineral aggregate is beneficial in 

determining a proper gradation, given a specific stockpile blend of aggregate, to meet volumetric 

requirements.   This research work compares the effects of gradation changes on the voids in the 

mineral aggregate by predicting the outcome with the Bailey Method.  SuperPave and Marshall 

mix designs are evaluated by the method.  Although the calculations used for the Bailey analysis 

are not difficult, they are confusing.  An Excel spreadsheet was developed to assist the designer 

with the analysis (Microsoft, 2003).   

1.3 OBJECTIVES 

The objective of this research is to compare the predicted results of VMA changes, from 

gradations variations using the Bailey Method, verses the results conducted in the laboratory.  

The main interest is to see how adequately the Bailey Method can predict VMA changes using 

both Marshall and SuperPave design methodologies.  By knowing the predicted values of VMA, 

the characteristics of how the aggregates pack together to form the asphalt structure can be better 

understood.   

1.4 SCOPE AND LIMITATIONS 

This research used 9.5mm and 19mm SuperPave and Wearing I Marshall mixes for the 

analysis.  The original mix designs were provided from Greer Asphalt and West Virginia Paving.  

Asphalt binder was used according to the mix designs provided by the contractors and consisted 

of PG 64-22 and PG 70-22 from Marathon Ashland.  The original designs were analyzed and 

developed into both a coarser and a finer mix.  The three different variations were then analyzed 

by the Bailey Method to predict VMA changes from the change in gradation to coarser and finer.  

The main limitation was the lack of resource information and previous research using this 
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method.  The Transportation Research Board was the main information source that was 

recovered through extensive searches (Vavrik, et. al., 2002).  The Excel spreadsheet is capable of 

analyzing Stone Matrix Asphalt (SMA) mixtures by the Bailey Method, although the West 

Virginia Department of Transportation does not design SMA mixtures.  Therefore, this research 

did not test SMA mixtures in the laboratory.    

1.5 REPORT ORGANIZATION  

 This report is organized into six chapters and an appendix.  Following the Introduction, 

Chapter 2 is a literature review that explains SuperPave and Marshall mix designs, the basics of 

asphalt film thickness, volumetric equations, and the procedure of the Bailey Method.  Chapter 3 

explains the research methodology and procedures for testing and analyzing the hot mix asphalt 

samples according to the Bailey procedure.  Chapter 4 shows the computer analysis program 

developed to calculate the Bailey Method results.  Chapter 5 shows the results from the 

conducted experiments and the relativity to the Bailey Method. Chapter 6 concludes the main 

portion of the report with conclusions and recommendations for future analyses.  The final 

appendix details the test data and calculations involved in preparing test samples and conducting 

the analysis through the Bailey Method procedure.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

 The review first gives background information on SuperPave and Marshall mix design 

methods.  The volumetric calculations and concept of film thickness are then discussed.  The 

remaining proportion of the review discusses the background and utilization of the Bailey 

Method.   

2.2 MIX DESIGNS 

2.2.1 SuperPave 
 The SuperPave (an acronym for Superior Performing Asphalt Pavement System) mix 

desing method was developed through the Strategic Highway Research Program (SHRP) as an 

initiative to develop an improved mix design procedure.  A new method of mix design was 

desired to design for various traffic volumes, axle loads, and environments.  The SuperPave 

method was developed to provide tests and models to predict potential rutting, thermal cracking, 

and fatigue cracking (Roberts, et. al., 1996). 

 The SuperPave method evaluates the volumetric properties of compacted hot mix asphalt 

concrete samples to analyze the quality of the mix and to determine the design asphalt content.  

The samples are compacted by a SuperPave gyratory compactor.  This compaction device was 

developed to simulate the compaction of asphalt by orienting the aggregate particles similar to 

what is observed in the field condition.  The gyratory compactor induces a shearing action during 

compaction by providing vertical pressure, angle and speed of gyration, and number of gyrations.  

The number of gyrations is specified according to the traffic level and average design high air 

temperature.  High air temperatures and high levels of traffic cause the asphalt to densify more 

and require higher laboratory compaction densities.  The SuperPave procedure specifies a 
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vertical pressure of 600 kPa (87 psi), an angle of gyration of 1.25º, and a gyration speed of 30 

revolutions per minute.  

 The SuperPave method requires gradation controls for determining the aggregate blend of 

the mixture.  The control points specify ranges for allowable percent of aggregate to pass a 

designated sieve size.  SuperPave defines a primary control sieve which is the separation point 

between a coarse and fine mixture according to SuperPave criteria.  The control points and 

primary control sieve requirements are shown in Table 2.1 (WVDOT MP 401.02.29, 2000) for 

the two mix types used in this research.  In the SuperPave method, aggregate blends with the 

amount of material passing the primary control sieve less than the value in Table 2.1 are 

classified as coarse mixes. 

Table 2.1 Gradation Requirements for SuperPave  

 Nominal Maximum Aggregate Size 
Sieve Size 9.5 mm  19 mm 

25   100 
19   90-100 

12.5 100 90 max 
9.5 90-100   

4.75 90 max 47* 

2.36 32-67 23-49 
47* 

0.075 2.0-10.0 2.0-8.0 
* SuperPave Primary Control Sieve 

 

2.2.2 Marshall 
 The Marshall method was originally developed by Bruce Marshall of the Mississippi 

State Highway Department in 1939.  The U.S. Army Corps of Engineers experimented with the 

Marshall design to develop its current form and standard compaction apparatus (Roberts, et. al., 

1996).   
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 The Marshall mix design method uses the mixture’s stability, flow, and volumetric 

parameters to analyze the quality of the mix and determine an optimal asphalt content.  These 

parameters are determined from compacted samples obtained from using a Marshall compactor.  

This apparatus compacts the asphalt concrete samples by dropping a hammer from a consistent 

height for a specified number of blows per side.  The Marshall specifications for number of 

blows per side are 35 for light traffic, 50 for medium traffic, and 75 for heavy traffic.  West 

Virginia uses 75 blows for heavy mix designs and 50 blows for all other mixes.  

The Marshall method requires gradation controls for determining the aggregate blend of 

the mixture.  The control points specify ranges for allowable percent of aggregate to pass a 

designated sieve size.  The control point requirements for Marshall mix designs are shown in 

Table 2.2 (WVDOT MP 401.02.22, 2000).  

Table 2.2 Gradation Requirements for Marshall 

Sieve 
Size Marshall Wearing I           

12.5 100 
9.5 85-100 

4.75 80 max 
2.36 30-55 

0.075 2.0-9.0 
 

2.3 VOLUMETRIC ANALYSIS 

 The volumetric analysis is calculated from the values for bulk specific gravity (Gsb) and 

theoretical specific gravity (Gmm).  The values for these specific gravities are determined using 

AASHTO T166 and AASHTO T209, respectively.  The volumetric parameters are the voids in 

the mineral aggregate (VMA), voids in total mix (VTM), voids filled with asphalt (VFA), and 

the dust-to-binder ratio.  For Marshall mix designs, an addition parameter for stability and flow 
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(AASTO T245) must be evaluated.  The equations for these parameters are listed below 

(Roberts, et. al., 1996). 

( )
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 (2.4) 

where 

 VMA = volume of voids in mineral aggregate 

 VTM = air voids in the total compacted mix 

 VFA = voids filled with asphalt 

 Gmb = bulk specific gravity of compacted mix 

 Gsb = bulk specific gravity of aggregate 

 Gmm = theoretical maximum specific gravity 

 P200 = percent aggregate passing the #200 sieve 

 Pbe = effective percent binder  

 Pb = percent binder   

 SuperPave uses the effective binder content for the dust to binder ratio, while Marshall 

uses the total percent binder for this ratio.  The design volumetric criteria for SuperPave and 

Marshall mix designs according AASHTO and WVDOT standard specifications are shown in 

Tables 2.3 and 2.4 for the mix types evaluated in this research. 
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Table 2.3 SuperPave Design Criteria 

 Nominal Maximum Aggregate Size 
Design Criteria 9.5 mm 19 mm 
Air Voids (%) 4.0 4.0 

VMA (%) 15 min 13 min 
VFA (%) 73-76 65-75 

Dust-to-Binder 0.8-1.6 0.6-1.2 
 

Table 2.4 Marshall Design Criteria 

Design Criteria Heavy Traffic 
Compaction, # of blows per side 75 

Stability (N) 8000 min 
Flow (0.25mm) 8-14 
Air Voids (%) 3-5 

VMA (%) 15 min 
VFA (%) 65-76 

Dust-to-Binder 0.8-1.6 
 

2.4 ASPHALT FILM THICKNESS  

Asphalt film thickness is the thickness of asphalt cement that coats the surface of the 

aggregate particles in the mixture.  Asphalt film thickness is not directly considered as part of 

mixture design.  However, the voids in the mineral aggregate, which can be determined from 

laboratory tests is related to asphalt film thickness; so film thickness is controlled in an indirect 

manner.  The film thickness is calculated based on the surface area of the aggregate and the 

volume of asphalt in the mixture (Roberts, et. al., 1996).  The surface area of the aggregate is 

directly affected by the gradation of the mixture.  Since fine aggregates have a higher surface 

area per unit weight than coarse aggregates, the finer the aggregate blend the higher the surface 

area.  In order to maintain a consistent asphalt film thickness, the effective percent binder of a 

mixture must be increased as a function of the fineness of the aggregate blend.  Equation 2.5 

shows the calculations to determine asphalt film thickness (Roberts, et. al., 1996).  
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w
s

be
F MSA

VT ρ×
×

=   (2.5) 

where 

TF = average film thickness 

Vbe = effective volume of asphalt binder 

SA = surface area of aggregate 

Ms = mass of aggregate 

ρw = density of water 
 

 The surface area factors used for the calculation of the asphalt film thickness were 

originally developed by Hveem and Edwards (Kandhal, et. al., 1998).  When SuperPave was 

developed, the VMA criteria from the Marshall method were retained as required mix design 

parameters.  Kendhal, et. al. (1998) examined the use of these VMA criteria for SuperPave and 

made suggestions for altering the criteria.  Zaniewski and Reyes (2003) evaluated Kandhal’s 

work with respect to West Virginia aggregates.  An alternative method for determining the 

surface area required in Equation 2.5 was developed.  The surface area of the material larger than 

the No. 200 sieve was computed by assuming the aggregate retained on a sieve were spheres 

with a diameter equal to the average of the sieve the material was retained on and the next larger 

sieve.  The surface area of the material passing the No. 200 sieve was measured using the Blaine 

air permeability apparatus, ASTM C-204.  This method produced surface area factors given in 

Table 2.5.  The surface area for an aggregate blend was computed as the sum of the percent of 

material retained on each sieve times the surface area factor.  
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Table 2.5 Surface Area Factors for Computing Asphalt Film Thickness 

Sieve Surface Aera 
Factor 

1 25 0.07 
3/4 19 0.10 
1/2 12.5 0.14 
3/8 9.5 0.21 
#4 4.75 0.32 
#8 2.36 0.64 

#16 1.18 1.28 
#30 0.6 2.54 
#50 0.3 5.03 

#100 0.15 10.06 
#200 0.075 20.13 

Pan Sand 118.5 
Pan Limestone 434.8 

 

2.5 BAILEY METHOD 

2.5.1 Background 
 The Bailey Method is an approach to selecting aggregate gradations for hot mix asphalt 

mixture design that was developed by Robert Bailey of the Illinois Department of 

Transportation.  The method is used to create a strong aggregate skeleton by developing the 

proper voids in the mineral aggregate to achieve good durability and rut resistance.  The strong 

skeleton is created by enhancing aggregate interlock and aggregate structure.  The method 

develops aggregate interlock as the primary support of the structure and a balanced gradation to 

complete the mixture.  Desirable qualities in asphalt are achieved by understanding the packing 

characteristics of the aggregate through the Bailey Method.  The method is directly based on the 

voids in the mineral aggregate (VMA), air voids, and the properties of compaction (Vavrik, et. 

al., 2002).   The reference material for the Bailey Method in this literature review was 

extensively researched and only a limited source of reference material was found.  This research 
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included extensive internet searches and documents published by the Transportation Research 

Board. 

 The Bailey Method is not a mix design method, but a tool to be used to create a better hot 

mix asphalt concrete for pavements.  The method can be used for any mix design method such as 

SuperPave, Marshall, Hveem, or stone matrix asphalts.  

2.5.2 Basic Principles  
 The Bailey Method was developed under two basic principles: aggregate packing and the 

definition of coarse and fine aggregates.  The two principles are the basis for the relationship 

between aggregate gradation and mixture volumetric properties.  

 Aggregate packing is the orientation of the aggregate particles after compaction.  The 

level of compaction between the aggregate particles will determine the voids of the mixture 

because the aggregate particles cannot be completely packed to fill the entire volume completely.  

The level of packing for an asphalt mixture depends on the following: 

• Type and amount of compaction energy.  There are several types of compaction methods 

such as static pressure, impact, or shearing.  Higher densities can be developed by 

increasing the compaction energy.  

• Shape and size of the particle.  Round particles often arrange into denser configurations 

than flat and elongated particles which tend to resist packing.   

• Surface orientation and texture.  Smoother aggregate particles tend to slide against each 

other more easily than particles with rough surfaces.  This allows the particles to re-orient 

themselves more easily into denser configurations.  

• Gradation of the mixture.  Mixtures with varying particles sizes will pack more densely 

than mixtures with single-sized particles.  
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• Strength of the particles.  The strength of the particles will affect the amount of 

degradation that occurs during the compaction process.  

The second principle is the designation of coarse aggregates from fine aggregates.  

Coarse aggregates are large particles that when placed in a unit volume create voids.  Fine 

aggregates are small particles that can fill the voids that are created by the coarse aggregate in 

the mixture.  Traditionally, the designation between fine and coarse aggregates was whether or 

not a particle passed the 4.75-mm sieve.  In the Bailey Method, the coarse and fine designation 

depends on the nominal maximum particle size (NMPS) of the mixture.  The NMPS is defined 

according to the SuperPave definition.  The sieve that controls the designation between coarse 

and fine aggregates according to Bailey is called the primary control sieve (PCS).  This primary 

control sieve is not the same as the standard SuperPave primary control sieve1.  The PCS is 

based on the NMPS which will vary for different types of mixtures.  The PCS is determined by 

the following equation and should be rounded to the nearest sieve size: 

PCS = NMPS x 0.22  (2.6) 
 
where  
 

PCS = Primary Control Sieve for entire blend 
 

NMPS = Nominal Maximum Aggregate Size for overall blend (one sieve size larger than 
first to retain more than 10%) 

 
 The separation between the coarse and fine aggregates can been seen in the Figure 2.1 

(Vavrik, et. al., 2002).  The dashed lined in the figure represents the PCS to show the separation 

between the coarse and fine aggregates for a blend with a NMPS of 19mm.   

1 For the duration of the text, the term PCS (Primary Control Sieve) refers to the Bailey PCS and not the standard 
definition according to SuperPave. 
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Figure 2.1 Separation between Bailey Coarse and Fine Aggregate for 19mm NMPS 

 

2.5.3 Combining Aggregates by Volume 
 The coarse aggregate in the mixture create voids.  The volume of voids must be 

calculated to determine the volume of fine aggregate needed to fill the voids.  The mixtures are 

evaluated based on the volume to create a mixture with proper aggregate interlock, but for 

simplicity the aggregates are monitored on a weight basis.  For coarse aggregates there are three 

governing weights2 that must be determined.  The weights are the loose unit weight (LUW), 

rodded unit weight (RUW), and the chosen unit weight (CUW).  The loose unit weight and the 

rodded unit weight can be seen in the Figure 2.2 (Vavrik, et. al., 2002).   

2 The term unit weight is used in the reference material for the Bailey Method, although the value is actually unit 
mass since the units are kilograms per meter cubed.  The common term of unit weight is used throughout the text to 
comply with convention.   
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Figure 2.2 Loose Versus Rodded Unit Weight Compacted Aggregate Samples 

 The loose unit weight is the amount of aggregate that fills a specified unit volume 

without any compaction energy applied to the aggregate.  This value represents the beginning 

value of aggregate interlock before compaction.  The loose unit weight is determined by the 

AASHTO T-19 Unit Weight and Voids in Aggregate procedure.  The procedure requires the 

loose aggregate to be shoveled into a unit weight metal bucket and measured in the loose 

condition without compaction energy.  The loose unit weight is determined by dividing the mass 

of the aggregate in the metal bucket by the volume of the metal bucket in kg/m3. 

 The rodded unit weight is the amount of aggregate that fills a specified unit volume after 

compaction energy is applied to the aggregate.  This value represents the value of aggregate 

interlock after compaction.  The rodded unit weight is determined by the AASHTO T-19 Unit 

Weight and Voids in Aggregate procedure.  The procedure requires filling the mold in three lifts 

and rodding each lift 25 times.  The rodded unit weight is then determined by dividing the mass 

of the aggregate in the metal bucket by the volume of the metal bucket in kg/m3.  AASHTO T-19 

specifies the container size should be increased as a function of the maximum aggregate size.  

However, the recommended practice when evaluating aggregates for asphalt concrete is to use a 

 
 
(a) Loose Condition 

 

 
(b) Rodded Condition 
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container with a volume of 1/4 ft3 (0.0071 m3) for coarse aggregate and 1/30 ft3 (0.00094 m3) for 

fine aggregates (Pine, 2005).  

 The percent chosen unit weight is the value that the designer selects based on the desired 

interlock of coarse aggregate.  The designer must decide if the mixture design is going to be a 

fine-graded mixture, dense-graded mixture, or a stone matrix mixture.  After the mixture type is 

selected, the percent chosen unit weight can be selected.  

The percent chosen unit weight is selected based on a percentage of the loose unit weight 

of coarse aggregate.  The range for a dense graded coarse mixture is 95% to 105% of the loose 

unit weight of coarse aggregate for a mixture that will obtain some degree of coarse aggregate 

interlock.  Values that exceed 105% of the loose unit weight of coarse aggregate are prone to 

increased aggregate degradation and difficulty of compaction in the field.  Values greater than or 

equal to 110% are considered SMA mixtures and although difficult to construct in the field, 

SMA mixtures resist rutting and provide increased durability (Roberts, et. al., 1996). 

 The percent chosen unit weight for a fine graded mixture should be less than 90% of the 

loose unit weight of coarse aggregate.  This will ensure that the load is carried predominantly by 

the fine aggregate structure.  The percent chosen unit weight range between 90% and 95% 

should be avoided due to the high probability of varying in and out of coarse aggregate interlock.  

Figure 2.3 shows the selection of the chosen unit weight based on the percent of loose unit 

weight of coarse aggregate in the mixture (Vavrik, et. al., 2002).  

 The rodded unit weight of fine aggregates also needs to be determined.  The unit weight 

is used to determine the volume of fine aggregate needed to fill the voids created by the coarse 

aggregate.  Properly filling the voids will help maximum the strength of the fine aggregate 

structure.  The rodded unit weight of fine aggregate is determined by the AASHTO T-19 Unit  
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Figure 2.3 Selection of Chosen Unit Weight for Coarse Aggregate 

 

Weight and Voids in Aggregate procedure.  The procedure requires rodding the loose fine 

aggregate by applying compaction effort to the aggregate using a tamping rod.  The rodded unit 

weight is calculated by dividing the weight of the aggregate by the volume of the bucket in 

kg/m3 (Vavrik, et. al., 2002).  

2.5.4 Aggregate Ratios 
 The combined blend is analyzed using three parameters:  the coarse aggregate ratio (CA), 

the coarse portion of fine aggregate ratio (FAc), and the fine portion of the fine aggregate ratio 

(FAf).  These parameters are calculated using the designated sieves:  

• half sieve  

• primary control sieve (PCS)  

• secondary control sieve (SCS)  

• tertiary control sieve (TCS)   

The half sieve is the closest sieve to one half the nominal maximum particle size.  The primary 

control sieve is the closest sieve to 22 percent of the nominal maximum particle size.  The 

secondary control sieve is the closest sieve to 22 percent of the primary control sieve size and the 

90% 

    

95% - 105% 

110% 
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tertiary control sieve is the closest sieve to 22 percent of the secondary control sieve.  The 22 

percent used to determine the Bailey control sieves is determined from the estimation of void 

size created by the four aggregate shape combinations as shown in Figure 2.4 (Aurilio, et. al., 

2002).  The average of the void sizes shown in Figure 2.4 is 0.22. 

Table 2.6 shows the sieve size for each designated sieve based on the nominal maximum 

particle size for a Bailey coarse graded mixture.  

 

 

Figure 2.4 Estimation of Void Size between Aggregates for Bailey Control Sieves 
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void size = 0.15d 
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Three flat particles,  
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Table 2.6 Bailey Coarse and SMA Graded Mixture Control Sieves  

 NMPS, mm 
DESIGNATED SIEVES 37.5 25.0 19.0 12.5 9.5 4.75 

Half Sieve 19 12.5 9.5 4.75 4.75 2.36 
PCS 9.5 4.75 4.75 2.36 2.36 1.18 
SCS 2.36 1.18 1.18 0.6 0.6 0.3 
TCS 0.6 0.3 0.3 0.15 0.15 0.075 

 

For coarse and SMA mixes, the pavement loads are carried by the skeleton of coarse 

aggregates. For Bailey fine graded mixtures, there is too much space between the coarse particles 

to transfer the load, hence the load is carried by the fine particles and the voids between the 

“large” fine particles must be filled by the “finer” fine particles.  This requires redefining the 

designated sieves for the analysis of Bailey fine mixes.  The sizes for the designated sieves for 

fine Bailey mixes are shown in Table 2.7.   

Table 2.7 Bailey Fine Graded Mixture Control Sieves  

 NMPS, mm 
DESIGNATED SIEVES 37.5 25.0 19.0 12.5 9.5 4.75 

Original PCS 9.5 4.75 4.75 2.36 2.36 1.18 
New Half Sieve 4.75 2.36 2.36 1.18 1.18 0.60 

New PCS 2.36 1.18 1.18 0.60 0.60 0.30 
New SCS 0.60 0.30 0.30 0.15 0.15 0.075 
New TCS 0.15 0.075 0.075 * * * 

• Sieve size too small to be calculated – value not determined. 

The coarse aggregate ratio, CA, evaluates the effect the coarse portion of the blend has on 

the mixture.  The equation for CA uses the percents passing the half sieve and the primary 

control sieve.  Changing the CA affects the way the aggregates pack together which will lead to 

changes in the VMA.  The CA describes how the coarse aggregate packs together and how the 

fine aggregate portion of the aggregate blend will fill the voids created. The calculation for CA 

is:  
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)100(
)(

HS

PCSHS

P
PPCA

−
−

=   (2.7) 

where  

 CA = coarse aggregate ratio 

 PHS = percent passing the half sieve (new half sieve for Bailey fine blend)  

 PPSC = percent passing the Bailey primary control sieve (new PSC for Bailey fine blend) 

 The coarse portion of fine aggregate ratio, FAc, fills the voids created by the coarse 

portion of the blend.  The FAc describes how the coarse portion of the fine aggregate is going to 

pack together and how the aggregate is going to create voids that will be filled by the fine portion 

of the fine aggregate. The calculation for the FAc is: 

PCS

SCS
c P

PFA =   (2.8) 

where  

 FAc = ratio of coarse portion of fine aggregate 

 PSCS = percent passing the secondary control sieve (new SCS for Bailey fine blend) 

 PPSC = percent passing the Bailey primary control sieve (new PSC for Bailey fine blend) 

The fine portion of fine aggregate ratio, FAf, fills the voids created by the coarse portion 

of the fine aggregate of the overall blend.  The FAf also describes the remaining voids in the 

overall fine aggregate blend from the small voids it creates. The calculation for the FAf ratio is: 

SCS

TCS
f P

PFA =  (2.9) 

where  

 FAf = ratio of fine portion of fine aggregate 

 PTSC = percent passing the Bailey tertiary control sieve (new TSC for Bailey fine blend) 
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PSCS = percent passing the secondary control sieve (new SCS for Bailey fine blend)  

 The equations for the three aggregate ratios are based on the values of percent passing 

each sieve size.  The percent passing the designated sieves are used in the ratios in Equations 2.7, 

2.8, and 2.9.  Table 2.8 and 2.9 summarize the calculations for the aggregate ratios based on the 

nominal maximum aggregate size and type of blend.  

Table 2.8 Aggregate Ratios for Coarse and SMA Graded Mixtures  

NMPS, mm 
Ratio 

CA FAc FAf 

37.5 
P19-P9.5 P2.36 P0.60 
100-P19 P9.5 P2.36 

25.0 
P12.5-P4.75 P1.18 P0.30 
100-P12.5 P4.75 P1.18 

19.0 
P9.5-P4.75 P1.18 P0.30 
100-P9.5 P4.75 P1.18 

12.5 
P4.75-P2.36 P0.60 P0.15 
100-P4.75 P2.36 P0.60 

9.5 
P4.75-P2.36 P0.60 P0.15 
100-P4.75 P2.36 P0.60 

4.75 
P2.36-P1.18 P0.30 P0.075 
100-P2.36 P1.18 P0.30 

 

Table 2.9 Aggregate Ratios for Fine Graded Mixtures  

NMPS, mm Ratio 
CA FAc FAf 

37.5 P4.75-P2.36 P0.60 P0.15 
100-P4.75 P2.36 P0.60 

25.0 P2.36-P1.18 P0.30 P0.075 
100-P2.36 P1.18 P0.30 

19.0 P2.36-P1.18 P0.30 P0.075 
100-P2.36 P1.18 P0.30 

12.5 P1.18-P0.60 P0.15 ** 
100-P1.18 P0.60   

9.5 P1.18-P0.60 P0.15 ** 
100-P1.18 P0.60   

4.75 P0.60-P0.30 P0.075 ** 
100-P0.60 P0.30  

Pi = indicates percent passing sieve size  
** Sieve size too small to be calculated – value not determined.  
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The values for the three aggregate ratios indicate different characteristics of the asphalt 

mixture.  The CA ratio affects the VMA and construction problems.  A low CA ratio indicates 

that the mix is prone to segregation of the coarse aggregate.  Segregation is a result of the coarse 

aggregate clustering in one particular area creating an excess of coarse aggregate in one area and 

a lack of coarse aggregate in another area.  This will decrease the service life of an asphalt 

pavement.  The fine aggregate ratios also indicate changes in the VMA of the mixture.  

Recommended ranges for the three aggregate ratios are shown in Tables 2.10 according to coarse 

and fine gradation type and Table 2.11 shows the recommended ratios for SMA mixtures 

(Vavrik, et. al., 2002). 

Table 2.10 Recommended Ranges of Aggregate Ratios for Coarse and Fine Mixtures 

 NMPS, mm 
 37.5 25.0 19.0 12.5 9.5 4.75 
CA (Bailey Coarse Blend) 0.80-0.95 0.70-0.85 0.60-0.75 0.50-0.65 0.40-0.55 0.30-0.45 

CA (Bailey Fine Blend) 0.60-1.00 0.60-1.00 0.60-1.00 0.60-1.00 0.60-1.00 0.60-1.00 

FAc  0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 

FAf  0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 
 

Table 2.11 Recommended Ranges of Aggregate Ratios for SMA Mixtures 

 NMPS, mm 
 19.0 12.5 9.5 

CA 0.35-0.50 0.25-0.40 0.15-0.30 

FAc  0.60-0.85 0.60-0.85 0.60-0.85 

FAf  0.65-0.90 0.60-0.85 0.60-0.85 
 

2.5.5 Effects on VMA 
 The Bailey Method has four basic parameters which relate to changes in VMA.  The four 

parameters are the percent chosen unit weight, CA, FAc, and FAf.  The effect that each parameter 

has on the VMA is dependent on whether the aggregate blend is considered a coarse blend or a 

 



  22 

fine blend by Bailey’s definition.  Table 2.12 displays the general effect on the VMA based on 

changes in the four parameters (Vavrik, et. al., 2002).  

Table 2.12 Effects of Increasing Bailey Parameters on VMA 

Parameter Coarse Blend Fine Blend SMA 
Percent Chosen Unit Weight increases decreases increases 

CA  increases increases increases 
FAc  decreases decreases decreases 
FAf  decreases decreases decreases 

  

As seen in Table 2.12, the increasing percent chosen unit weight results in an increase in 

VMA of Bailey coarse blends and a decrease in VMA for Bailey fine blends.  Therefore, the 

minimum VMA predicted by the Bailey Method should be located at the separation between 

Bailey coarse and Bailey fine mixtures.  The separation point is a chosen unit weight of 90 

percent.  Figure 2.5 shows the relationship between the change in chosen unit weight and the 

effect it has on the VMA.  The figure shows the minimum predicted VMA value as the mix 

changes from coarse to fine.  The percent chosen unit weight values less than or equal to 90 

represent the fine mixtures while the values 95 to 105 represent the coarse mixtures.  The values 

greater than or equal to 110 represent the SMA mixtures.  The region from 90 to 95 should be 

avoided to prevent high probability of the mixture transferring in and out of coarse aggregate 

interlock.  Mixtures above and below the transition zone3 between coarse and fine will perform 

more predictably to slight variations in the gradation of the mixture (Aurilio, et. al., 2002).  

3 The term transition zone is introduced to describe the area between the different zones for the mix types. 
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Figure 2.5 Chosen Unit Weight vs. Change in VMA 

The magnitude of change in VMA is also dependent on whether the aggregate blend is a 

coarse blend or a fine blend according to Bailey.  The change in value of the Bailey parameters 

that result in a 1% change in VMA is presented in Table 2.13.  The VMA will be adjusted 

according to Table 2.12. 

 

Table 2.13 Change in Value of Bailey Parameter to Produce 1% Change in VMA 

 Change in Parameter 
 Coarse Blend Fine Blend 

Chosen Percent Unit Weight 4% change in Bailey PCS 6% change in Bailey PCS 
CA  0.20 0.35 

FAc  0.05 0.05 

FAf  0.05 0.05 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 INTRODUCTION  

 This research evaluated VMA laboratory results compared to the values predicted by the 

Bailey Method.  Laboratory asphalt concrete samples were created and volumetric analysis was 

performed.  The values for VMA were then analyzed versus the results predicted for the Bailey 

Method.  The experiment used two mix designs from each of two contractors.  Each mix design 

was altered into a coarse and a fine mixture.  The contractor’s mix, coarse mix, and fine mix 

were each evaluated at three asphalt contents.  The factors and levels used in the experiment 

were: 

Factors Levels 
Mix type Greer - 9.5 and 19 mm SuperPave 

WV Paving – 9.5 mm SuperPave, Wearing I Marshall 
Gradation Contractor, Fine, Coarse 
Percent Binder Design, Low, High 

 
The parameters for each sample are shown in Table 3.1. 
 

3.2 MIX TYPES 

 The aggregate used for this research was provided by two suppliers, Greer Industries, 

Morgantown, WV and West Virginia Paving Company, Dunbar, WV.  Greer industries provided 

aggregates for a 9.5mm and 19mm SuperPave mix and West Virginia Paving provided a 9.5mm 

SuperPave mix and a Wearing I Marshall mix.  The aggregate for the SuperPave designs was 

crushed limestone aggregate while the aggregate for the Marshall design was #8 crushed gravel.  

As would be expected, there are large differences in the shape and textrure of the crushed 

limestone and gravel materials used in the Superpave versus Marshall mixes.  Figure 3.1 shows a 

sample of each aggregate type.  The aggregates were air dried and sieved according to the 

following sieve sizes:  19 mm, 12.5 mm, 9.5 mm, 4.75 mm, 2.36 mm, 1.18 mm, 0.6 mm, 0.3 
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mm, and 0.075 mm.  The material passing the 0.075 mm sieve was kept as dust material.  Extra 

bag house fines 

Table 3.1 Sample Combinations 

Sample Contractor Mix Type Gradation Percent Binder 

1 Greer 9.5 Coarse 4.6 
2 Greer 9.5 Coarse 5.1 
3 Greer 9.5 Coarse 5.6 
4 Greer 9.5 Contractor  5.2 
5 Greer 9.5 Contractor  5.7 
6 Greer 9.5 Contractor  6.2 
7 Greer 9.5 Fine 6.2 
8 Greer 9.5 Fine 6.7 
9 Greer 9.5 Fine 7.2 
10 Greer 19 Coarse 4.0 
11 Greer 19 Coarse 4.5 
12 Greer 19 Coarse 5.0 
13 Greer 19 Contractor  4.3 
14 Greer 19 Contractor  4.8 
15 Greer 19 Contractor  5.3 
16 Greer 19 Fine 4.7 
17 Greer 19 Fine 5.2 
18 Greer 19 Fine 5.7 
19 WV Paving 9.5 Coarse 4.5 
20 WV Paving 9.5 Coarse 5.0 
21 WV Paving 9.5 Coarse 5.5 
22 WV Paving 9.5 Contractor  5.4 
23 WV Paving 9.5 Contractor  5.9 
24 WV Paving 9.5 Contractor  6.4 
25 WV Paving 9.5 Fine 5.8 
26 WV Paving 9.5 Fine 6.3 
27 WV Paving 9.5 Fine 6.8 
28 WV Paving Wearing I Coarse 4.5 
29 WV Paving Wearing I Coarse 5.0 
30 WV Paving Wearing I Coarse 5.5 
31 WV Paving Wearing I Contractor  5.2 
32 WV Paving Wearing I Contractor  5.7 
33 WV Paving Wearing I Contractor  6.2 
34 WV Paving Wearing I Fine 6.4 
35 WV Paving Wearing I Fine 6.9 
36 WV Paving Wearing I Fine 7.4 
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Figure 3.1 Coarse aggregates used in Marshall and SuperPave 9.5 mm mixes 

 

were provided by Greer Industries and were used as additional dust material when needed.  All 

aggregates were then washed to remove excess dust material, dried and stored in separate bins 

according to size. 

3.3 AGGREGATE BLENDS 

 For each of the four mixes from the contractors, three blends were used during the 

experiment: 

• Contractor blend – these are classified as fine mixes according to the Bailey Method. 

• Coarse blend – the stockpile blends were altered to produce the coarsest possible mix while 

remaining within the SuperPave and Marshall control points.  These are classified as coarse 

mixes according to the Bailey Method.  

• Fine blend – the stockpile blends were altered to produce the finest possible mix while 

remaining within the SuperPave and Marshall control points and with the percent passing 

(a) Crushed gravel (b) Crushed limestone 
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the SuperPave primary control sieve being less than the criteria for a SuperPave coarse mix.  

Hence, these mixes would be classified as coarse mixes by the SuperPave method, but are 

classified as fine mixes according to the Bailey Method. 

The experimental blends are presented in Tables 3.2 and 3.3, and Figures 3.2 to 3.5. The 

percent chosen unit weights for each design are shown in Table 3.4. 

 

 

Table 3.2 Greer Asphalt Aggregate Gradations 

 Greer Asphalt 
 9.5mm SuperPave 19mm SuperPave 

 
Contractor 

Mix 
Coarse    

Mix 
Fine      
Mix 

Contractor 
Mix 

Coarse      
Mix 

Fine     
Mix 

Sieve Size (mm)             
25.0 100 100 100 100 100 100 
19.0 100 100 100 96 96 96 
12.5 100 100 100 72 68 74 
9.5 96 95 97 58 52 61 

4.75 62 55 69 42 34 46 
2.36 37 32 43 31 25 34 
1.18 23 19 26 19 16 21 

0.600 15 12 17 12 10 13 
0.300 10 9 11 8 7 9 
0.075 4.5 4.0 5.1 4.5 4.2 4.7 
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Table 3.3 West Virginia Paving Aggregate Gradations 

 West Virginia Paving 
 9.5mm SuperPave Wearing I Marshall 

 
Contractor 

Mix 
Coarse   

Mix 
Fine       
Mix 

Contractor 
Mix 

Coarse  
Mix 

Fine      
Mix 

Sieve Size (mm)             
12.5 100 100 100 100 100 100 
9.5 98 96 98 95 94 97 

4.75 71 60 77 59 52 73 
2.36 42 32 47 35 30 46 
1.18 25 19 28 25 22 34 

0.600 16 12 18 17 15 23 
0.300 10 8 11 9 7 11 
0.075 4.6 3.8 5.0 4.9 4.2 6.1 

 

 

 

Table 3.4 Percent Chosen Unit Weight of Each Mixture 

 Greer Asphalt 
 9.5mm 19mm 
 Contractor Coarse Fine Contractor Coarse Fine 

Percent ChosenUnit 
Weight 85 98 73 89 105 80 

       
       
 West Virginia Paving 
 9.5mm Wearing I 
 Contractor Coarse Fine Contractor Coarse Fine 

Percent Chosen Unit 
Weight 75 99 64 84 96 60 

 



  29 

 
Figure 3.2 Gradation Chart for Greer 9.5mm Aggregate 
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Figure 3.3 Gradation Chart for Greer 19mm Aggregate 
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Figure 3.4 Gradation Chart for West Virginia Paving 9.5mm Aggregate 
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Figure 3.5 Gradation Chart for West Virginia Paving Wearing I Aggregate 
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3.4 UNIT WEIGHT OF AGGREGATE 

The rodded and loose unit weights of the aggregate were determined according to 

AASHTO T19 Method for Determining the Unit Weight and Voids in Aggregate.  The method 

requires a specific bucket size for each nominal maximum aggregate size to perform the unit 

weight experiment.  The volume of the bucket used for the coarse and fine aggregate conformed 

to recommendations for the Bailey Method (Pine, 2005).  The buckets and tamping rod were 

fabricated by Wilson Works of Morgantown, WV.  The volume of the two buckets was tested by 

filling them with water to the top edge of the bucket and covering them with a glass plate and 

water temperature of 77°F.  The volume of the water was then calculated by subtracting the mass 

of the empty bucket from the mass of the bucket filled with water to determine the volume of the 

bucket for the unit weight calculations.  The bucket volume used for the coarse aggregate unit 

weight was 0.00705 m3 and the bucket volume for the fine aggregate unit weight was     

0.000965 m3. 

3.5 PERCENT BINDER 

The percent asphalt binder selected for each mixture was determined by controlling the 

asphalt film thickness.  VMA is the mix design parameter that controls asphalt film thickness. 

This is the reason that the film thickness was held constant for this research.  By holding the 

asphalt film thickness constant, the change in VMA should be a result of the change in gradation 

and not the varying asphalt film thickness.   

A target asphalt content was determined for each mixture according to constant asphalt 

film thickness and from that value a high percent binder and low percent binder were determined 

by adjusting the target percent binder ±0.5%.  Therefore, for each mixture there was a target 

asphalt content, high asphalt content, and a low asphalt content. The target asphalt content was 
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determined by using the asphalt content used by the contractor.  Therefore, when the gradation of 

the contractor’s mix design was altered to a coarse and fine mix, the asphalt content was adjusted 

to maintain constant asphalt film thickness.  Equation 2.5 and the surface area factors from 

Zaniewski and Reyes (2003) were used to determine the target asphalt content for constant film 

thickness.  The resulting asphalt contents for each of the mixes are shown in Tables 3.5 and 3.6. 

Table 3.5 Asphalt Contents for Greer Mixes 

  Greer 
  9.5mm 19mm 

Asphalt  
Content Coarse Contractor Fine Coarse Contractor Fine 

Low 4.6 5.2 5.8 3.6 3.9 4.1 
Target 5.1 5.7 6.3 4.1 4.4 4.6 
High 5.6 6.2 6.8 4.6 4.9 5.1 

 

Table 3.6 Asphalt Contents for West Virginia Paving Mixes 

  West Virginia Paving 
  9.5mm Wearing I 

Asphalt 
Content   Coarse Contractor Fine Coarse Contractor Fine 

Low 4.5 5.4 5.8 4.5 5.2 6.4 
Target 5.0 5.9 6.3 5.0 5.7 6.9 
High 5.5 6.4 6.8 5.5 6.2 7.4 

 

3.6 MIXTURE PREPARATION 

 Once the blend gradations were selected, weigh out tables were created to properly blend 

the individual aggregates for the various gradation types.  The proper portions of aggregate and 

asphalt binder for each mix design were heated to the upper limit of the mix temperature range 

for the asphalt binder type.  The mixing and compaction temperatures for each binder grade are 

shown in the Table 3.7 (Marathon Ashland, 2006). Once at the required temperature the 
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aggregate and binder were mixed in a bucket mixer.  Each batch of material was sufficient to 

make two bulk specific gravity samples and one maximum theoretical specific gravity sample.   

Table 3.7 Mixing and Compaction Temperatures 

Binder 
Grade 

Mixing Temp (ºC) Compaction Temp (ºC) 
Min Max Min Max 

PG 64-22 150 157 140 145 
PG 70-22 159 165 148 153 

 

The mixed sample was then quartered into the required masses and placed in pans for 

short-term aging.  The sample sizes varied according to the mix type and mix design method: 

• Marshall Wearing I mixes – two 1200 gram samples for Gmb and one 1000 gram 

sample for Gmm 

• SuperPave 9.5 mm mixes – two 4500 gram samples for Gmb and one 1000 gram 

sample for Gmm 

• SuperPave 19 mm mixes – two 4500 gram samples for Gmb and one 1500 gram 

sample for Gmm 

The samples were then placed in the oven at the compaction temperature for two hours and 

stirred after one hour.  

The two Gmb samples were then ready to be compacted with the gyratory compactor for 

the SuperPave samples and the Marshall compactor for the Marshall samples.  The samples were 

placed into preheated molds and compacted to 100 gyrations for the SuperPave samples and 75 

blows per side for the Marshall samples.  The samples were allowed to cool and then the Gmb 

samples were extracted from the mold to be analyzed for bulk specific gravity.   
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The Gmm samples were continually stirred at room temperature to allow the asphalt to 

harden without compaction effort.  Then the Gmm samples were analyzed for theoretical 

maximum specific gravity.  

3.7 BAILEY ANALYSIS  

 The Bailey analysis was performed on the contractor’s original mix, the coarse mix, and 

the fine mix to determine the aggregate ratios for those mixtures.  The aggregate ratios according 

to Bailey for the original contractor’s mix design were also evaluated and are discussed in the 

following subsections. 

3.7.1 Contractor’s Mix Design Analysis  
 The contractor’s mix design according to the Bailey Method are considered to be fine 

mixtures because the chosen unit weight according to each design was less than or equal to 90 

percent.  Therefore, the criteria for the aggregate ratios must conform to the recommended ratios 

for the fine mixtures in the Bailey analysis.  The contractors results were compared to the 

recommended criteria set forth by Bailey.  The criteria for the aggregate ratios and the values for 

each contractor mix design are presented in Table 3.8.   

 The results of this analysis indicate that some of the contractors’ mixes do not meet all 

the Bailey criteria (Vavrik, et. al., 2002).  The Greer 19 mm mix has a CA higher than the 

recommended range.  This suggests the mix is prone to horizontal deformation during 

compaction, allowing the mat to widen.  The FAf for this mix is too high indicating the mix may 

be prone to low air voids and low voids in the mineral aggregate.  The WV 9.5 mm mix has a 

low CA indicating the mix may be susceptible to segregation.   
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Table 3.8 Recommended Bailey Aggregate Ratios and Contractors’ Ratios  

 Criteria Greer 9.5mm Greer 19mm WV 9.5mm WV Wearing I 
Percent Chosen 

Unit Weight 
≤90% (Fine) 

95%-105% (Coarse) 85% 89% 75% 84% 

CA 0.60-1.00 0.66 1.20 0.53 0.80 
FAc 0.35-0.50 0.41 0.42 0.44 0.41 

FAf 0.35-0.50 0.47 0.56 NA NA 

Bold values indicate results outside Bailey criteria 
 

3.7.2 Coarse and Fine Blends Design  
 The contractors’ mix designs were altered into coarse and fine blends and evaluated by 

the Bailey Method.  The aggregate ratios were selected to conform to the recommended ratios for 

coarse and fine mixtures accordingly in the Bailey analysis.  The coarse and fine mixture results 

were compared to the recommended requirements set forth by Bailey.  The requirements for the 

aggregate ratios and the values for each contractor mix design are presented in Table 3.9 and the 

coarse and fine designations refer to Bailey coarse and fine blends.  There are a few cases where 

the Bailey criteria could not be met with any combination of the available aggregates.  In these 

cases, blends were selected to minimize the violation of the Bailey criteria. 

 The calculations for the aggregate ratios were conducted to predict the magnitude of 

change in VMA.  The aggregate ratios are also used in the Bailey analysis to indicate potential 

construction problems in the field.  The coarse aggregate ratio is the main indicator for potential 

problems. If the CA ratio exceeds a value of 1.0, the mix is unbalanced and neither the large 

particles nor the small particles in the coarse aggregate can control the structure of the aggregate 

skeleton.   If the CA ratio is below the recommended range based on the mix type, the blend is 

prone to segregation which can lead to a short pavement life (Vavrik, et. al., 2002).   
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Table 3.9 Recommended Bailey Aggregate Ratios and Coarse and Fine Blends 

   Modified Greer Asphalt 
   9.5mm 19mm 

Parameter 
Bailey Criteria  

Coarse Fine Coarse Fine 
Coarse Fine 

Percent Chosen Unit Weight 95%-105% ≤90% 98% 73% 105% 80% 
CA 0.40-0.55 0.60-1.00 0.51 0.53 0.38 1.08 

FAc  0.35-0.50 0.35-0.50 0.38 0.47 0.47 0.43 

FAf 0.35-0.50 0.35-0.50 0.50 NA 0.44 0.52 
       
   Modified West Virginia Paving 
   9.5mm Wearing I 

Parameter 
Bailey Criteria  

Coarse Fine Coarse Fine 
Coarse Fine 

Percent Chosen Unit Weight 95%-105% ≤90% 99% 64% 96% 60% 
CA  0.40-0.55 0.60-1.00 0.70 0.53 0.46 0.92 

FAc  0.35-0.50 0.35-0.50 0.38 0.44 0.50 0.39 

FAf 0.35-0.50 0.35-0.50 0.50 NA 0.40 NA 

Bold values indicate results outside Bailey criteria 
 

 The VMA changes according to the Bailey Method are finally determined according to 

each parameter: change in chosen unit weight, CA ratio, FAc ratio, and FAf ratio.  An overall net 

change according to the parameters was then determined to predict the change in VMA 

according to the changes in gradation.  As shown in Table 3.10, some parameters increase the 

VMA while other decrease the VMA and net change is a reflection of the magnitude of each 

change.  The net changes in VMA are then added or subtracted to the VMA of the contractor’s 

mix which was the starting mix design for the Bailey analysis.  The changes in VMA added to 

the VMA of the contractor’s mix design give a prediction for the VMA in the coarse and fine 

mixtures.  
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Table 3.10 Changes in VMA According to Bailey Parameters and Overall Net Change 

 Greer Asphalt West Virginia Paving 
 9.5mm 19mm 9.5mm Wearing I 

Change Due to Following 
Parameters Coarse Fine Coarse Fine Coarse Fine Coarse Fine 

Percent Chosen Unit Weight 1.25 1.00 2.00 0.67 2.50 0.83 1.25 1.83 
CA  -0.75 -0.11 -0.10 -0.34 -1.50 0.00 -0.65 0.34 
FAc -0.60 0.00 -0.20 -0.20 0.00 0.00 -0.20 0.40 
FAf 0.60 NA -0.40 0.80 1.20 NA 0.20 NA 

Net Change in VMA 0.5 0.9 1.3 0.9 2.2 0.8 0.6 2.6 
 

3.7.3 Greer Asphalt 9.5mm Coarse Mixture Example 
 The change due to percent chosen unit weight is determined by subtracting the percent 

passing the Bailey PCS in the coarse gradation from the percent passing the Bailey PCS in the 

contractors mix, seen in Table 3.2, and dividing by four as described in Table 2.13 for coarse 

mixtures.   

25.1
4

3237
4

,, =
−

=
−

= CoarsePCSBaileyContractorPCSBailey PP
WeightUnitChosenPercent  

 The change due to CA is determined by subtracting the CA from the contractor’s mixture 

from the CA of the coarse mixture and dividing by 0.20 as described in Table 2.13 for coarse 

mixtures.  

75.0
20.0

66.051.0
20.0

−=
−

=
−

= ContractorCoarse CACA
CA  

 The changes in VMA due to FAc and FAf are determined by subtracting the Bailey 

parameter value of the coarse mixture from the parameter value of the contractor’s mixture and 

dividing by 0.05 as described in Table 2.13 for coarse mixtures.  Note that the value from the 

coarse mixture is subtracted from the contractor’s mixture to produce proper sign (positive or 

negative) values indicated in Table 2.12 as the Bailey parameter values of FAc and FAf increase.   
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60.0
05.0

47.050.0
05.0

,, =
−

=
−

= CoarsefContractorf
f

FAFA
FA  

 Following the calculation of the four Bailey parameters, a net change in VMA is 

determined as the sum of the four Bailey parameters.  The net change is dependent on whether 

the parameters indicated an increase or a decrease in VMA which can result in a net change near 

zero if the positive values cancel the negative values. 

50.060.060.075.025.1 =+−+−+=

+++= fc FAFACAWeightUnitChosenPercentVMAInChangeNet
 

 

3.7.4 West Virginia Paving Wearing I Fine Mixture Example 
The change due to percent chosen unit weight is determined by subtracting the percent 

passing the Bailey PCS in the contractor gradation from the percent passing the Bailey PCS in 

the fine mix, seen in Table 3.3, and dividing by six which as in Table 2.13 for fine mixtures.   

83.1
6

3546
6

,, =
−

=
−

= ContractorPCSBaileyFinePCSBailey PP
WeightUnitChosenPercent  

The change due to CA is determined by subtracting the CA from the contractor’s mix 

from the CA of the fine mix and dividing by 0.35 as described in Table 2.13 for coarse mixes. 

34.0
35.0

80.092.0
35.0

=
−

=
−

= ContractorFine CACACA  

The changes in VMA due to FAc and FAf are determined by subtracting the Bailey 

parameter value of the fine mixture from the parameter value of the contractor’s mixture and 

dividing by 0.05 which is described in Table 2.13 for coarse mixtures.  Note that the value from 

the coarse mixture is subtracted from the contractor’s mixture to produce proper sign (positive or 

negative) values indicated in Table 2.12 as the Bailey parameter values of FAc and FAf increases.   
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Following the calculation of the four Bailey parameters, a net change in VMA is 

determined.  The net change is determined by adding the values of the four parameters together.  

The net change is dependent on whether the parameters indicated an increase or a decrease in 

VMA which can result in a net change near zero if the positive values cancel the negative values. 

6.240.034.083.1 =+++=

+++=

NA
FAFACAWeightUnitChosenPercentVMAInChangeNet fc  

3.8 Statistical Analysis of Results  

 The results from the laboratory testing were compared to the Bailey prediction using the 

statistical software ANOVA contained within the Microsoft Excel program.  Student t statistics 

were computed to determine if the data was significant enough to reject the hypothesis.  The 

hypothesis was that the slope of the correlation between the Bailey predication and lab results 

were equal to 1 for VMA.  This would indicate that the Bailey predication and WVU lab results 

were identical.  

3.9 Summary of Research Methodology 

The experimental program was designed to provide an analysis of four mixes that are 

approved for the construction of flexible pavements in West Virginia.  The Bailey parameters of 

these mixes were analyzed.  In addition, modified mixes which represent both coarser and finer 

aggregate blends and three levels of asphalt content were prepared to determine if the changes in 

the volumetric properties of these blends correspond to the estimated changes according to the 

Bailey Method.  
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CHAPTER 4: COMPUTER ANALYSIS OF BAILEY METHOD 

 The Bailey Method requires a vast amount of extensive equations and iterations to fully 

utilize the method.  Selecting a chosen unit weight to adjust the desired blend of the new 

gradation requires an iteration process.  Therefore, an Excel spreadsheet was created to perform 

the Bailey analysis.  By using the program, quick iterations of the Bailey Method to determine 

gradation shifts and variations to the aggregate ratios can be performed.  The user interface of the 

Excel spreadsheet is shown in Figure 4.1.  The figure displays all required input information to 

execute the Bailey analysis.  The figure also displays a gradation chart with required control 

points that is automatically configured when all necessary data is entered into the spreadsheet. 

The computer spreadsheet was developed using a colored coded system to provide an 

easier input system for the user.  The spreadsheet uses five different color variations to indicate 

the function of a particular data input field.  Table 4.1 displays the color designations and the 

appropriate input for each field.      

 The Bailey Method is an appropriate method for analyzing aggregate blends for any 

method of mix design.  The program was developed for Marshall, SuperPave and SMA mixes.  

A drop down menu is used to select the mix design method.  Once the mix design method is 

chosen, the mix type can be selected.  Examples for each would be SuperPave – 9.5mm or 

Marshall – Wearing I.  The mix design method and mix type are shown in the spreadsheet as a 

yellow field indicating that it requires input.  Following the selection of mix design method and 

mix type in the two yellow fields, the blue fields for nominal maximum aggregate size and 

primary control sieve will be automatically generated.   
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Figure 4.1 Excel Spreadsheet User Interface 
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Table 4.1 Color Designations for Data Input 

Yellow Fields - requires data input 
Green Fields - optional, no affect on analysis 
Tan Fields - adjust to achieve desired blend. 
Blue Fields - computed values. 
Purple Fields - computed values out of range. 

 

Table 4.2 Mix Design Input  

Mix design method  
Mix type  

Nominal Maximum Aggregate Size  
Primary Control Sieve  

 

Table 4.2 shows the fields for mix design method, mix type, nominal maximum aggregate size, 

and primary control sieve and the appropriate color coordination.  

 Once the mix design method and type are chosen, the aggregate information for 

appropriate stockpiles must be inputted.  The gradation of each aggregate source must be 

inputted into the appropriate coarse and fine aggregate column in the yellow fields.  Each 

aggregate has optional field inputs shown in green that refer to the aggregates code, source ID, 

name, and location to classify the origin of each aggregate.  

 The remaining yellow fields that require information about the aggregate are the bulk 

specific gravity and loose or rodded unit weight.  The loose unit weight is required for the coarse 

aggregate and the rodded unit weight is required for the fine aggregate although both can be 

entered for additional information.  The information for maximum theoretical specific gravity 

and percent water absorption is shown in green fields as information that is optional and will not 

affect the analysis results.    
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 The remaining blue fields are the computed values for the aggregate blend gradation and 

the percentage of each aggregate in the mix design which will be adjusted according to chosen 

unit weight.  The column for the final aggregate blend is shown in blue, unless the blended 

gradation does not fall within the mix design control points for SuperPave or Marshall.  In this 

case, the fields will turn purple to indicate that the values are out of range and require an 

adjustment to the blend percents.  Table 4.3 shows the Excel spreadsheet interface for the 

aggregate information input section.   

Table 4.3 Aggregate and Gradation Information  

Design No.  
 

 
Producer   

Mixture Code   
Aggregates CA 1 CA 2 CA 3 CA 4 FA 1 FA 2 FA 3 FA 4 MF Lime  

Code              
Source Id              

Name              
Location             Blend 

50               
37.5               
25.0               
19.0               
12.5               
9.5               

4.75               
2.36               
1.18               

0.600               
0.300               
0.150               
0.075               
Gsb               
Gsa              

% Absorption             
Percent in blend          

Loose Unit Weight             
Rodded Unit Weight             
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 The remaining user input to compute the Bailey analysis is the chosen unit weight and the 

desired blend volumes for each aggregate source as shown in Table 4.4.  This section, identified 

with tan fields, is used for the iteration process of the Bailey Method to evaluate a blend. 

Adjusting the chosen unit weight, either in the coarse or fine direction, will recalculate the 

gradation and change the percentages of each aggregate source in the blend.  The desired blend 

by volume can also be adjusted to create an optimal blend by altering the final percentage of 

each aggregate to be used in the blend.  The desired blend by volume for both the coarse and fine 

aggregate is selected and it must total 100% which is automatically calculated in the blue field 

shown in the final column.  The blue field for total will turn purple if the total does not equal the 

required 100% by volume for each aggregate classification – coarse and fine.  

Table 4.4 Chosen Unit Weight and Desired Blend Volumes  

    Desired Blend by Volume 
  CA 1 CA 2 CA 3 CA 4 Totals 

Chosen Unit Weight            
    FA 1 FA 2 FA 3 FA 4  

          
 

 When all required and desired input fields are entered into the spreadsheet, the program 

computes the Bailey aggregate ratio values.  Table 4.5 shows the aggregate ratio and comments 

portion of the spreadsheet.  The values are computed and then compared to recommended values 

according to Bailey.  If the aggregate ratios do not fall within the recommended values, the field 

will turn purple and a statement of potential problems is displayed in the comments section. 

Table 4.5 Aggregate Ratios  

Aggregate Ratios Comments 
CA   
FAc   
FAf   
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 The computer program was tested using a Bailey analysis example provided by the 

Transportation Research Board as a trial procedure to test the results from the computer program 

(Vavrik, et. al., 2002).  This was conducted to check for computer equation errors, in addition to 

hand calculations, to avoid improperly calculating the inputted information.  The analysis from 

the test showed identical results to the results from the Transportation Research Board and 

verified the Bailey calculations developed for this research.  
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CHAPTER 5: RESULTS AND ANALYSIS 

5.1 BAILEY RESULTS  

 The prediction results according to Bailey and the WVU lab results are depicted in Tables 

5.1 and 5.2.  The tables display the results for three mix blends (contractor, coarse, fine) with 

ranging asphalt binder contents (target, high, low) for each original contractor mix gradation.  

The net difference between the WVU lab results and the Bailey prediction are depicted in the 

tables.  

The coarse gradations for the Greer 19mm and West Virginia Paving Wearing I were the 

most accurate estimations for the Bailey coarse graded mixtures with a range of 0.2 to 1.1 of 

difference between the actual lab results and the estimated value.  The fine gradations for the 

Greer 9.5mm and West Virginia Paving 9.5mm were the most accurate estimations for the Bailey 

fine graded mixtures, with the exception of the high asphalt content for the Greer 9.5mm sample,  

with a range of 0 to 0.7 of difference between the actual lab results and the estimated value.  The 

perfect prediction of zero difference occurred twice for the two fine graded mixtures previously 

mentioned.  

 The most irregular results where the predictions of the fine gradation for the West 

Virginia Paving Wearing I mixture.  The difference in the actual lab results from the Bailey 

prediction ranged from 3.8 to 4.6.   

 The correlation graph of the entire sample set, Figure 5.1, shows the WVU lab results 

versus the Bailey predictions with a linear regression line.  Figure 5.1 displays the correlation 

results and the linear regression line in the form of y=ax+b, where “a” is the slope and “b” is the 

point the line intersects the y-axis.  The Excel linear regression function was used to fit a line to 

the data.  This function also computes an analysis of variance, ANOVA.  The results of this 
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analysis are presented in Appendix B.  The results for the entire data set are shown in Table B.1.  

The regression coefficients are 0.702 and 5.27 for a and b with standard errors of 0.211 and 

3.563, respectively.  An ideal result would yield a line with a slope of 1 that intersects the y-axis 

at 0.  To determine if the slope coefficient is significantly different from 1, a Student t statistic is 

computed as: 

( ) ( ) 412.1
211.0

000.1702.0
−=

−
=

−
=

e

idealreg
stat S

aa
t  (5.1) 

The tcrit for 95% confidence and 22 degrees of freedom is ±2.074.  Since the tstat is within 

the range of tcrit there is insufficient evidence to reject the hypothesis that the slope coefficient, a, 

is equal to 1.  This is an indication that the Bailey computed and laboratory results are similar.  

As shown in Figure 5.1, the Wearing I fine blends appear to be outliers.  The laboratory 

determined VMA values are in the range of 14.8 to 16.0, which are reasonable values.  The 

corresponding VMA values computed with the Bailey Method are in the range of 19.0 to 19.8, 

which is much higher than could be reasonably expected.  Based on this observation, the results 

for the Marshall Wearing I mixes were omitted from Figure 5.2.  New a and b values for the 

SuperPave mixtures were computed.  The resulting coefficients were 0.971 and 0.119, with 

standard errors of 0.161 and 2.757, for a and b, respectively.  Repeating the calculation of tstat as 

shown in Equation 5.1 resulted in a tstat of -0.180 and tcrit, with 16 degrees of freedom, is ±2.120.  

Hence, there is insufficient evidence to reject the hypothesis that the slope, a, is equal to 1.  This 

is an indication that the Bailey computed and laboratory results are similar.  The difference 

between tstat and tcrit for the SuperPave mixtures, which omitted the Marshall samples, was 1.940 

and the difference for the entire sample set was 0.662.  This indicates that the SuperPave 

mixtures display a much higher correlation between the Bailey predication and VMA lab results.  
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As seen in Figure 5.1 and 5.2, the correlation coefficient, R2, value doubled from 0.34 to 0.69 

with the omission of the Marshall Wearing I mixture. 

Table 5.1 Greer Asphalt VMA Analysis 

 9.5mm Mixture 
Gradation Contractor Coarse Fine 

Percent Binder Low Target High Low Target High Low Target High 
WVU Lab 18.4 16.7 16.2 17.4 17.6 19.2 19.3 18.3 20.0 

Bailey - - - 18.9 17.2 16.7 19.3 17.6 17.1 
Net Difference - - - -1.5 0.4 2.5 0 0.7 2.9 

          
 19mm Mixture 

Gradation Contractor Coarse Fine 
Percent Binder Low Target High Low Target High Low Target High 

WVU Lab 12.6 12.3 12.8 14.2 13.4 14.9 14.4 15.0 15.0 
Bailey - - - 13.9 13.6 14.1 13.5 13.2 13.7 

Net Difference - - - 0.3 -0.2 0.8 0.9 1.8 1.3 
 

Table 5.2 West Virginia Paving VMA Analysis 

 9.5mm Mixture 
Gradation Contractor Coarse Fine 

Percent Binder Low Target High Low Target High Low Target High 
WVU Lab 17.3 17.0 16.6 17.6 18.1 17.8 18.1 18.1 17.9 

Bailey - - - 19.5 19.2 18.8 18.1 17.8 17.4 
Net Difference - - - -1.9 -1.1 -1.0 0 0.3 0.5 

          
 Wearing I Mixture 

Gradation Contractor Coarse Fine 
Percent Binder Low Target High Low Target High Low Target High 

WVU Lab 16.4 17.1 16.9 17.7 16.6 17.2 15.2 15.9 14.9 
Bailey - - - 17.0 17.7 17.5 19.0 19.7 19.5 

Net Difference - - - 0.7 -1.1 -0.3 -3.8 -3.8 -4.6 
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Figure 5.1 VMA Correlations - WVU Lab and Bailey Prediction for All Samples 
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Figure 5.2 VMA Correlations - WVU Lab and Bailey Prediction for SuperPave Mixtures 
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5.2 ANALYSIS FOR 9.5MM AGGREGATE MIXTURES 

The determination between a coarse mixture and a fine mixture is based on the chosen 

unit weight.  According to the Bailey Method, a chosen unit weight of 90 percent is the 

separation point.  This is also the point at which the VMA should be at the minimum.  Figures 

5.3, 5.4, and 5.5 display the trend in VMA for the 9.5 mm aggregate mixtures for low, target, and 

high asphalt contents, respectively.  The lines on the figures were fitted to the data using the 

second order polynomial trend line function in Excel.  One line is for the predicted changes in 

VMA according to the Bailey Method.  The other line was fitted to the VMA determined in the 

laboratory.  The line for the Bailey Method has the characteristic shape shown on Figure 2.5.  

There is a slight difference in the location of the minimum VMA; Figure 2.5 shows the minimum 

should be at 90 percent chosen unit weight while the analysis of the 9.5 mm mixes has the 

minimum ranging from 82 to 87 percent.  The trend line fitted to the laboratory data does not 

correspond to the shape described by the Bailey Method.  In fact, on all three figures the line 

fitted to the lab data shows a maximum VMA value which corresponds approximately to the 

location of the Bailey minimum point. 

5.3 ANALYSIS FOR 19MM AGGREGATE MIXTURES  

The results for the 19mm mixture are displayed in Figure 5.6.  Since only one 19mm 

mixture was analyzed, Figure 5.6 displays the results for the fine, contractor, and coarse mixtures 

at the three asphalt contents.  The Bailey Method uses measured laboratory results as the baseline 

for computing how VMA changes in response to changes to the blend of aggregates.  In this 

case, the contractors’ mix design served as the baseline and predictions were made of how 

changing to the coarse and fine blends affect VMA.  Hence, only two sets of data are available 

for establishing a trend line, which would result in a linear relationship so no trend line was  
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Figure 5.3 VMA vs. Chosen Unit Weight for 9.5mm Aggregate Mixtures at Low Asphalt 

Content 
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Figure 5.4 VMA vs. Chosen Unit Weight for 9.5mm Aggregate Mixtures at Target Asphalt 

Content 
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Figure 5.5 VMA vs. Chosen Unit Weight for 9.5mm Aggregate Mixtures at High Asphalt 

Content 

 

placed on Figure 5.6 for the Bailey Method.  The polynomial trend line fitted to the laboratory 

results has the characteristic shape as depicted on Figure 2.5. 

The results for the 19mm mixture yielded a minimal VMA content at a chosen unit 

weight of 94 percent.  The results were consistent with the expected change of VMA as the 

mixture got finer and coarser according to the chosen unit weight.  
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Figure 5.6 VMA vs. Chosen Unit Weight for 19mm Aggregate Mixtures 

 

 



  56 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

 The results from the prediction of VMA through the Bailey Method provided a general 

trend and estimation to lab results for the various mixtures with an exception to the West 

Virginia Paving Wearing I Fine Mix which yielded irregular results.  The correlation graphs and 

statistical results show the correlation between the predicted Bailey results and the laboratory 

tested VMA significantly increased with the omission of the Marshall Wearing I mixture as 

compared to the SuperPave results.  The main difference between the SuperPave and Marshall 

mix designs is the SuperPave uses crushed limestone for both the coarse and fine aggregate 

while Marshall mix is a blend of crushed gravel, crushed limestone fine material and natural 

sand.    

 The West Virginia Paving Marshall Wearing I fine mixture yielded the most irregular 

prediction for VMA compared to the laboratory results.  The results were 3.8 to 4.6 off the 

Bailey predicted value.  The crushed gravel used in the Marshall mix was round in shape and 

smooth in texture, although it does meet the WVDOT requirement of a minimum of 80 percent 

of the material having two fractured faces.  The shape and texture characteristics of the gravel is 

vastly different from the crushed limestone which is highly angular with 100 percent having two 

or more fractured faces and rough in texture, as shown in Figure 3.1.  In addition, the Marshall 

mix has 30 percent natural sand which also has a smooth and rounded texture when compared to 

the crushed limestone fine aggregate used in the SuperPave mixes.  The Bailey Method does not 

directly account for the shape and texture of the aggregate source, but does approximate the 

aggregate’s shape from the loose and rodded unit weights.  The predicted change in VMA 

according to Bailey could be significantly changed due to the change in aggregate characteristics.  
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It is also possible that the difference in the compaction methods between Marshall and 

SuperPave affected the results of the comparison. 

 The Bailey Method predicted an increase in VMA for all the mixtures analyzed in this 

research compared to the contractors’ mixtures as seen in Table 3.10.  The only mixture to have 

a significant decrease in the VMA as compared to the predicted increase according to Bailey was 

the Marshall Wearing I fine mixture.  The Marshall Wearing I mix is the only mixture that 

contained crushed gravel and sand.  Therefore, the fine mixture for the Wearing I contained the 

highest amount of sand in any mixture which yielded the largest decrease in VMA compared to 

the predicted increase according to Bailey.   

 The SuperPave mixtures, consisting of crushed limestone aggregate, yielded a much 

higher correlation in the prediction of VMA by the Bailey Method compared to laboratory 

results.  The correlation value doubled when comparing SuperPave mixtures alone from 

comparing the entire sample population of SuperPave and Marshall mix designs.   

The selection of coarse and fine aggregate designation through the Bailey analysis was 

also consistent with anticipated trends.  Figures 5.3, 5.4, 5.5, and 5.6 indicate the change in VMA 

as the chosen unit weight changes the mixture from a coarse to fine mixture.  The minimum 

values for VMA anticipated at the change of the mixture from coarse to fine according to Bailey 

were within 5 to 10 percent for the 9.5mm aggregate mixtures.  However, the lab values for 

VMA did not follow the expected trend.  The 19mm mixture was within 4 percent for the 

laboratory data.  The variation in these minimum values may be attributed to the Bailey Method, 

the procedure does not address how VMA changes when there is a sufficient change in the 

gradation to result in reclassifying the mix from coarse to fine and vice versa.  The approach in 
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this research was to treat the ratios for the coarse mixture according to coarse characteristics, 

although each original contractor mix was considered fine by the Bailey Method.   

6.2 RECOMMENDATIONS 

 The Bailey Method may be a useful tool to contractors trying to adjust gradations to meet 

specifications during the mix design process.  This method provides a prediction value for the 

VMA parameter as the mixture chances gradations.  The prediction can be used in place of 

random testing of different mixtures to reach an optimum mix design.  This research analysis 

shows the Bailey Method can provide this useful approach to designing an optimal mix design 

by providing a adequate prediction to the VMA parameter and testing its verification when used 

with aggregates meeting the SuperPave requirements.  However, the evaluation of the Marshall 

mix was not as successful. 

 Recommendations for future testing would include changes to initial conditions of the 

mixtures tested.  In this research report, all of the original contractors’ mix designs, which were 

used as a beginning point for the Bailey prediction, were fine mixtures according to Bailey.  The 

Bailey Method does not specifically indicate the proper procedure for predicting VMA when the 

mixture crosses the transition zone of a chosen unit weight between 90-95 percent.  The 

approach in this analysis was to treat the change from coarse to fine or fine to coarse the same as 

a fine mix becoming finer or a coarse mix becoming coarser.  Future testing would be 

appropriate to analyze contractor’s mixtures that are considered initially as coarse by the Bailey 

Method and determining if there are significant effects to the prediction of VMA when crossing 

the transition zone compared to staying above or below limit.  

 Other recommended testing would involve comparison of different aggregate sources 

used in the mixtures.  Aggregate texture and shape are not evaluated by the Bailey Method.  
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Switching from a crushed limestone with many fractured faces and rough texture to river gravel 

that is smooth and round could drastically affect the changes in VMA which is not accounted for 

in the Bailey Method.  The Wearing I mixtures that contain sand could also have a significant 

effect on the prediction by the Bailey method which was seen in the fine mixture for the Wearing 

I which had the largest decrease in VMA compared to the predicted increase according to Bailey.  

The effect of sand on the Bailey method prediction could also be analyzed in the future.   

 The Excel spreadsheet calculator that was developed for this research could be used on 

other mixes to evaluate characteristics of the mixture such as rutting and compaction problems.  

The Bailey Method indicates potential construction problems when the aggregate ratios are 

considered out of range according to the Bailey criteria.  The magnitude of these problems could 

be evaluated as the aggregate ratios change from mixture to mixture. 

 Other considerations for future testing could be for SMA mixtures which were not 

evaluated because the WVDOH does not use SMA designs.  The Excel spreadsheet calculator is 

capable of running the Bailey analysis for SMA mixtures.  Testing could also be done with other 

binder and asphalt content levels.   
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APPENDIX A – VOLUMETRIC RESULTS 

Table A1 Greer 9.5mm Contractor Blend Volumetric Results  

    Greer 9.5mm Contractor Blend 
    Low Asphalt Target Asphalt High Asphalt 
   

Criteria  Contractor WVU 
Lab Target4 Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s Pb, % - 5.2 5.2 - 5.7 5.7 - 6.2 6.2 - 

VTM, % 4.0 5.5 7.8 - 4.2 4.6 - 2.8 2.7 - 
VMA, % 15 min 16.1 18.4 - 15.8 16.7 - 15.8 16.2 - 
VFA, %  65-75 65.5 57.7 - 74.3 72.5 - 82.2 83.7 - 
D/B, % 0.6-1.2 1.0 1.0 - 0.8 0.8 - 0.8 0.8 - 

 
 
Table A2 Greer 9.5mm Coarse Blend Volumetric Results 

    Greer 9.5mm Coarse Blend 
    Low Asphalt Target Asphalt High Asphalt 
   

Criteria  Contractor WVU 
Lab Target Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s Pb, % - - 4.7 - - 5.2 - - 5.7 - 

VTM, % 4.0 - 7.5 - - 6.8 - - 7.6 - 
VMA, % 15 min - 17.4 18.9 - 17.6 17.2 - 19.2 16.7 
VFA, %  65-75 - 56.8 - - 61.3 - - 60.9 - 
D/B, % 0.6-1.2 - 1.0 - - 0.8 - - 0.8 - 

 

Table A3 Greer 9.5mm Fine Blend Volumetric Results 

    Greer 9.5mm Fine Blend 
    Low Asphalt Target Asphalt High Asphalt 
   

Criteria  Contractor WVU 
Lab Target Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s 

Pb, % - - 5.8 - - 6.3 - - 6.8 - 
VTM, % 4.0 - 7.7 - - 5.3 - - 5.5 - 
VMA, % 15 min - 19.3 19.3 - 18.3 17.6 - 20.0 17.1 
VFA, %  65-75 - 60.1 - - 70.8 - - 72.6 - 
D/B, % 0.6-1.2 - 1.0 - - 0.9 - - 0.8 - 

4 Target value is the Bailey Prediction for VMA. 
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Table A4 Greer 19mm Contractor Blend Volumetric Results 

    Greer 19mm Contractor Blend 
    Low Asphalt Target Asphalt  High Asphalt 
   

Criteria  Contractor WVU 
Lab Target Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s Pb, % - 4.3 4.3 - 4.8 4.8 - 5.3 5.3 - 

VTM, % 4.0 5.3 4.2 - 3.9 2.4 - 2.9 1.9 - 
VMA, % 13 min 14.1 12.6 - 13.8 12.3 - 14.1 12.8 - 
VFA, %  65-75 62.1 66.4 - 71.5 80.3 - 79.7 85.6 - 
D/B, % 0.6-1.2 1.0 1.0 - 1.0 1.0 - 0.9 0.9 - 

 
Table A5 Greer 19mm Coarse Blend Volumetric Results 

    Greer 19mm Coarse Blend 
    Low Asphalt Target Asphalt  High Asphalt 
   

Criteria  Contractor WVU 
Lab Target Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s Pb, % - - 4.0   - 4.5   - 5.0   

VTM, % 4.0 - 6.5   - 4.1   - 5.5   
VMA, % 13 min - 14.2 13.9 - 13.4 13.6 - 14.9 14.1 
VFA, %  65-75 - 54.7   - 69.4   - 63.2   
D/B, % 0.6-1.2 - 1.2   - 1.2   - 1.0   

 

 
Table A6 Greer 19mm Fine Blend Volumetric Results 

    Greer 19mm Fine Blend 
    Low Asphalt Target Asphalt  High Asphalt 
   

Criteria  Contractor WVU 
Lab Target Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s Pb, % - - 4.5   - 5.0   - 5.5   

VTM, % 4.0 - 6.6   - 5.4   - 4.5   
VMA, % 13 min - 14.4 13.5 - 15.0 13.2 - 15.0 13.7 
VFA, %  65-75 - 54.4   - 64.1   - 70.2   
D/B, % 0.6-1.2 - 1.2   - 1.2   - 1.0   
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Table A7 West Virginia Paving 9.5mm Contractor Blend Volumetric Results 

 

    West Virginia Paving 9.5mm Contractor Blend 
    Low Asphalt Target Asphalt High Asphalt 
   

Criteria  Contractor WVU 
Lab Target Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s Pb, % - 5.4 5.4 - 5.9 5.9 - 6.4 6.4 - 

VTM, % 4.0 5.1 7.4 - 4.3 6.0 - 2.3 4.4 - 
VMA, % 15 min 15.7 17.3 - 15.9 17.0 - 15.2 16.6 - 
VFA, %  65-75 67.0 57.4 - 73.1 64.6 - 85.1 73.3 - 
D/B, % 0.6-1.2 1.0 1.0 - 0.9 0.9 - 0.8 0.8 - 

 
 
Table A8 West Virginia Paving 9.5mm Coarse Blend Volumetric Results 

 

    West Virginia Paving 9.5mm Coarse Blend 
    Low Asphalt Target Asphalt High Asphalt 
   

Criteria  Contractor WVU 
Lab Target Contractor WVU 

Lab Target Contractor WVU 
Lab Target 

   

V
ol

um
et

ric
s Pb, % - - 4.5   - 5.0   - 5.5   

VTM, % 4.0 - 9.9   - 9.2   - 8.0   
VMA, % 15 min - 17.6 19.5 - 18.1 19.2 - 17.8 18.8 
VFA, %  65-75 - 44.0   - 49.4   - 54.9   
D/B, % 0.6-1.2 - 1.0   - 0.9   - 0.8   

 

Table A9 West Virginia Paving 9.5mm Fine Blend Volumetric Results 

 
    West Virginia Paving 9.5mm Fine Blend 
    Low Asphalt Target Asphalt High Asphalt 
   Criteria  Contractor WVU 

Lab Target Contractor WVU 
Lab Target Contractor WVU 

Lab Target    

V
ol

um
et

ric
s Pb, % - - 5.8   - 6.3   - 6.8   

VTM, % 4.0 - 7.3   - 6.4   - 5.0   
VMA, % 15 min - 18.1 18.1 - 18.1 17.8 - 17.9 17.4 
VFA, %  65-75 - 59.6   - 64.5   - 72.2   
D/B, % 0.6-1.2 - 1.0   - 0.9   - 0.8   
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Table A10 West Virginia Paving Wearing I Contractor Blend Volumetric Results 

 
    West Virginia Paving Wearing I Contractor Blend 
    Low Asphalt Target Asphalt High Asphalt 
   Criteria  Contractor WVU 

Lab Target Contractor WVU 
Lab Target Contractor WVU 

Lab Target 
   

V
ol

um
et

ric
s 

Pb, % - 5.2 5.2 - 5.7 5.7 - 6.2 6.2 - 
VTM, % 4.0 5.7 8.5 - 4.0 8.0 - 2.4 6.9 - 
VMA, % 15 min 15.9 16.4 - 15.3 17.1 - 15.0 16.9 - 
VFA, %  65-75 64.0 48.1 - 74.0 53.3 - 83.9 59.1 - 
D/B, % 0.6-1.2 1.0 1.0 - 1.0 1.0 - 0.9 0.8 - 
Stability 8000 N - 7828   - 12452   - 6048   

Flow 8-14 - 7.1   - 6.6   - 13.7   
 
Table A11 West Virginia Paving Wearing I Coarse Blend Volumetric Results 

 
    West Virginia Paving Wearing I Coarse Blend 
    Low Asphalt Target Asphalt High Asphalt 
   Criteria  Contractor WVU 

Lab Target Contractor WVU 
Lab Target Contractor WVU 

Lab Target 
   

V
ol

um
et

ric
s 

Pb, % - - 4.5   - 5.0   - 5.5   
VTM, % 4.0 - 10.6   - 8.5   - 8.2   
VMA, % 15 min - 17.7 17.0 - 16.6 17.7 - 17.2 17.5 
VFA, %  65-75 - 40.1   - 48.7   - 52.6   
D/B, % 0.6-1.2 - 1.0   - 1.0   - 0.8   
Stability 8000 N - 7560   - 9608   - 9252   

Flow 8-14 - 7.1   - 6.6   - 8.1   
 
Table A12 West Virginia Paving Wearing I Fine Blend Volumetric Results 

 
    West Virginia Paving Wearing I Fine Blend 
    Low Asphalt Target Asphalt High Asphalt 
   Criteria  Contractor WVU 

Lab Target Contractor WVU 
Lab Target Contractor WVU 

Lab Target 
   

V
ol

um
et

ric
s 

Pb, % - - 6.4   - 6.9   - 7.4   
VTM, % 4.0 - 5.1   - 4.8   - 2.7   
VMA, % 15 min - 15.2 19.0 - 15.9 19.7 - 14.9 19.5 
VFA, %  65-75 - 66.7   - 70.1   - 81.8   
D/B, % 0.6-1.2 - 1.0   - 1.0   - 0.8   
Stability 8000 N - 8184   - 10852   - 10228   

Flow 8-14 - 14.2   - 14.2   - 15.2   
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APPENDIX B – ANOVA  

Table B1 Regression Analysis of VMA for Bailey Prediction versus WVU Lab Results for 

All Blends 

Regression Statistics     
Multiple R 0.58     
R Square 0.34     
Adjusted R Square 0.31     
Standard Error 1.83     
Observations 24     

ANOVA     
  df SS MS F Significance F 

Regression 1 37.3 37.26 11.11 3.01E-03 
Residual 22 73.8 3.35   
Total 23 111.0    
          

  Coefficients Standard Error t Stat   
Intercept 5.27 3.56 1.48   
X Variable 1 0.70 0.21 -1.41   

 

Table B2 Regression Analysis of VMA for Bailey Prediction versus WVU Lab Results for 

SuperPave Blends 

Regression Statistics     
Multiple R 0.83     
R Square 0.69     
Adjusted R Square 0.68     
Standard Error 1.32     
Observations 18     

ANOVA     
  df SS MS F Significance F 

Regression 1 62.9 62.94 36.38 1.74E-05 
Residual 16 27.7 1.73   
Total 17 90.6    
          

  Coefficients Standard Error t Stat   
Intercept 0.12 2.76 0.04   
X Variable 1 0.97 0.16 0.18   
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